热门角色不仅是灵感来源,更是你的效率助手。通过精挑细选的角色提示词,你可以快速生成高质量内容、提升创作灵感,并找到最契合你需求的解决方案。让创作更轻松,让价值更直接!
我们根据不同用户需求,持续更新角色库,让你总能找到合适的灵感入口。
设计符合课程目标的讨论问题,适用于教育场景。
以下五个高阶讨论问题旨在引导学生围绕认知偏差与决策的核心理论、方法与应用展开基于证据的分析与对比,促进批判性思维与跨情境迁移。 1) 启发式是“错误”还是“生态理性”的策略? 论点:在不确定、信息有限且反馈稀薄的环境中,启发式可能兼具速度与适应性,但在可计算且结构明确的任务上则更易产生系统性偏差。请比较“启发式—偏差”传统与“快速而节俭”框架对同一现象的不同解释,并分析任务结构(如噪声水平、特征冗余度、样本量与反馈时滞)如何决定绩效差异;同时评估情感启发式在风险判断中的作用与边界条件(Kahneman & Tversky, 1974; Simon, 1956; Gigerenzer & Gaissmaier, 2011; Slovic, Finucane, Peters, & MacGregor, 2007)。 2) 去偏差干预:有效性、迁移性与持久性如何权衡? 论点:去偏差策略(如结构化分析、预先承诺、对抗性推理、检查表与阈值提示、基于错误示例的训练)在实验与现场情境中的效应量、时效性与外部效度存在显著异质性。请讨论“短时训练”与“流程再设计”的比较优势、成本与可扩展性,以及证据对“持久迁移”(跨任务、跨情境)的支持程度(Larrick, 2004; Milkman, Chugh, & Bazerman, 2009; Morewedge et al., 2015)。 3) 测量与效标效度:实验室偏差是否预测现实决策? 论点:经典任务(框架、锚定、合取谬误、认知反思测试)在信度、构念效度与对现实决策(如金融、临床、政策判断)的增量效度上结论并不一致。请评价这些测量的心理计量学质量、与一般认知能力/数感的重叠,以及其对实际绩效的预测价值与边界(Frederick, 2005; Toplak, West, & Stanovich, 2011; Tversky & Kahneman, 1981; Mussweiler & Strack, 2001)。 4) 文化与个体差异:偏差的普遍性与变异性 论点:大量证据来自WEIRD样本,偏差的“普适性”仍需跨文化与跨人群验证;同时,个体差异(如分析倾向、认知控制、思维风格)系统性影响偏差敏感度与纠偏能力。请讨论这些差异对课程内容本地化、学习难度分层与干预适配(个性化、情境化)的启示(Henrich, Heine, & Norenzayan, 2010; Stanovich & West, 2000)。 5) 政策与伦理:助推还是能力提升?人机协作中的偏差交互 论点:在公共政策与组织实践中,助推强调选择架构优化,能力提升侧重提高决策素养与信息加工;二者在自主性、透明度与长期能力建设上存在取舍。请评估两类策略在公平性、问责与可持续性上的伦理后果,并讨论在算法辅助决策中如何处理人类偏差与算法偏差的交互及其对公平与可解释性的影响(Thaler & Sunstein, 2008; Hertwig & Grüne-Yanoff, 2017; Kleinberg, Mullainathan, & Raghavan, 2018)。 参考文献 - Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives, 19(4), 25–42. - Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual Review of Psychology, 62, 451–482. - Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 61–135. - Hertwig, R., & Grüne-Yanoff, T. (2017). Nudging and boosting: Steering or empowering good decisions. Perspectives on Psychological Science, 12(6), 973–986. - Kahneman, D., & Tversky, A. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131. - Kleinberg, J., Mullainathan, S., & Raghavan, M. (2018). Human decisions and machine predictions. Quarterly Journal of Economics, 133(1), 237–293. - Larrick, R. P. (2004). Debiasing. In D. J. Koehler & N. Harvey (Eds.), Blackwell handbook of judgment and decision making (pp. 316–338). Blackwell. - Milkman, K. L., Chugh, D., & Bazerman, M. (2009). How can decision making be improved? Perspectives on Psychological Science, 4(4), 379–383. - Mussweiler, T., & Strack, F. (2001). The semantics of anchoring. Journal of Experimental Psychology: General, 130(3), 331–352. - Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129–138. - Slovic, P., Finucane, M., Peters, E., & MacGregor, D. G. (2007). The affect heuristic. European Journal of Operational Research, 177(3), 1333–1352. - Toplak, M. E., West, R. F., & Stanovich, K. E. (2011). The Cognitive Reflection Test as a predictor of performance on heuristics-and-biases tasks. Memory & Cognition, 39(7), 1275–1289. - Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Improving decisions about health, wealth, and happiness. Yale University Press. - Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211(4481), 453–458. - Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate. Behavioral and Brain Sciences, 23(5), 645–726. - Morewedge, C. K., Yoon, H., Scopelliti, I., Symborski, C. W., Korris, J., & Kassam, K. S. (2015). Debiasing decisions: Improved decision making with a single training intervention. Policy Insights from the Behavioral and Brain Sciences, 2(1), 129–140.
以下5个讨论问题旨在促发学生对分数加减的概念理解、策略比较与数学论证,强调多表征(数轴、面积模型、等值分数)、数量感与模型化思维。相关研究表明,通过探究性讨论与策略比较可提升分数概念的稳定性与程序流畅性,并降低常见误解的发生率(NCTM, 2014;Siegler et al., 2010;Lamon, 2012;Wu, 2011)。 1) 多策略求和与等值分数 - 问题:对 2/3 + 3/5 至少提出两种求解策略(如:最小公分母通分;以单位分数分解;基于数轴或面积模型的“重新分割”),并用图示或符号证明这些策略在一般情形下的等价性。比较各策略在计算效率、可推广性与易错点方面的差异,并提出适用场景的准则。 - 讨论要点:等值分数与公分母的必要性;多表征之间的对应;策略选择的依据与论证。 2) 分数减法的意义与错误反例 - 问题:以 3/4 − 2/3 为例,分别用“去掉”(take-away)与“测量差”(measurement/差距)的视角进行解释,用数轴或面积模型说明两种意义的一致性。构造一个反例,驳斥“分子相减、分母相减”的错误规则,并明确指出该规则为何违背分数的等值尺度。 - 讨论要点:差的多重语义;数学论证与反例;避免程序性“错规则”。 3) 重单位化与混合数减法 - 问题:计算 1 1/4 − 5/6,分别采用“转化为假分数通分”和“借位重组(重单位化)”两种方法,比较其认知负荷、可视化支持与易错点。请用语言或图示解释“向下借位”本质上是把“1”重表示为等值分数,并论证两法的数学等价性。 - 讨论要点:重单位化(reunitizing)的概念;混合数运算的结构化理解;策略选择的教学启示。 4) 估算与合理性检验 - 问题:不做精确计算,对 7/8 − 5/12 给出一个合理的下界与上界(如利用基准分数1/2、1、1/3、3/4等),并严格说明界限成立的充要条件。进一步讨论:在课堂中如何把“区间估计”作为检查精确计算是否合理的常规做法? - 讨论要点:数量感与基准数;不等式推理与误差控制;估算在过程监控中的作用。 5) 单位一致性与情境建模 - 问题:比较两个情境:(a) 3/4 个披萨 + 5/8 个披萨;(b) 3/4 个披萨 + 5/8 个蛋糕。哪一个可以直接进行分数相加?若要在情境(b)中相加,需要引入哪些建模假设或重新定义的单位(如统一为“同尺寸标准份”)?请给出清晰的单位说明、模型假设与运算表达,并解释答案的现实含义。 - 讨论要点:单位与整体的界定;跨对象加总的条件;从自然语言到数学表达的规范化。 参考文献 - Lamon, S. J. (2012). Teaching fractions and ratios for understanding (3rd ed.). Routledge. - National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. NCTM. - National Research Council. (2001). Adding it up: Helping children learn mathematics. National Academies Press. - Siegler, R. S., Carpenter, T., Fennell, F., Geary, D. C., Lewis, J., Okamoto, Y., Thompson, L., & Wray, J. (2010). Developing effective fractions instruction for K–8 (NCEE 2010-4039). Institute of Education Sciences. - Wu, H. (2011). Understanding numbers in elementary school mathematics. American Mathematical Society.
Below are five graduate-level discussion questions designed to elicit conceptual depth and analytical reasoning about Python functions and scope. Each question aligns with authoritative documentation and encourages application of the LEGB rule, closure semantics, and design trade-offs in functional abstractions. 1) How does Python’s LEGB resolution strategy interact with closure formation in nested functions, and what are the practical implications of “late binding” in loops? - Prompt: Consider the code: funcs = [] for i in range(3): funcs.append(lambda: i) outputs = [f() for f in funcs] Predict outputs and explain them via the execution model and naming/binding rules. Propose and justify at least two robust remedies (e.g., using lambda x=i: x; using functools.partial; or introducing an inner function that binds local state via parameters or nonlocal). - Cite relevant sections: execution model (naming and binding), FAQ on lambdas in loops. 2) Default argument evaluation: What principles should guide the use of default parameter values in function design, particularly with mutable objects? - Prompt: Analyze the behavior of: def append_item(item, bucket=[]): bucket.append(item) return bucket Discuss why the default is evaluated at function definition time and the consequences for state persistence across calls. Compare design alternatives, including the “None sentinel” pattern (def f(x, bucket=None): if bucket is None: bucket = []), explicit state objects, and immutable defaults. Evaluate trade-offs in correctness, readability, and performance. 3) When are global and nonlocal appropriate, and what are the risks to maintainability and testability? - Prompt: You must maintain cross-call state for a counter used by several functions in a module. Compare three designs: (a) a module-level global variable with global inside functions, (b) a closure-based counter using nonlocal, and (c) a class encapsulating state. Discuss implications for encapsulation, concurrency, refactoring, and unit testing. Provide a principled recommendation grounded in the language reference. 4) How do scoping rules for comprehension variables differ from for-loops, and why does this matter for correctness and refactoring? - Prompt: Given: y = 100 _ = [y for y in range(3)] What is the value of y afterward in Python 3, and why? Contrast this with the loop: y = 100 for y in range(3): pass Provide a formal account based on the reference semantics of comprehensions, including the separate implicit scope, and analyze common refactoring hazards. 5) Decorators and state: How should one structure decorator factories that capture configuration while preserving function identity and scope hygiene? - Prompt: Design a configurable rate-limiting decorator: def rate_limit(calls_per_sec): ... @rate_limit(5) def fetch(...): ... Explain how the decorator closure captures configuration and function objects, when nonlocal may be appropriate, and how to avoid unintended shared state (e.g., mutable defaults in the factory). Justify the use of functools.wraps to preserve metadata and discuss implications for introspection and tooling. References - Python Software Foundation. (n.d.). The Python Language Reference. https://docs.python.org/3/reference/ - Execution model: Naming and binding. https://docs.python.org/3/reference/executionmodel.html#naming-and-binding - Compound statements: Function definitions and decorators. https://docs.python.org/3/reference/compound_stmts.html#function-definitions - Expressions: Comprehensions. https://docs.python.org/3/reference/expressions.html#comprehensions - Python Software Foundation. (n.d.). The Python Tutorial: More on defining functions — Default argument values. https://docs.python.org/3/tutorial/controlflow.html#default-argument-values - Python Software Foundation. (n.d.). The global and nonlocal statements. https://docs.python.org/3/reference/simple_stmts.html#the-global-statement and https://docs.python.org/3/reference/simple_stmts.html#the-nonlocal-statement - Python Software Foundation. (n.d.). Programming FAQ: Lambdas in loops and late binding. https://docs.python.org/3/faq/programming.html#why-do-lambdas-defined-in-a-loop-with-different-values-all-return-the-same-result - Python Software Foundation. (n.d.). functools.wraps. https://docs.python.org/3/library/functools.html#functools.wraps
在有限备课时间内,快速产出与课程目标对齐的高质量讨论题。按认知层级分梯度,支持研讨课、翻转课堂与双语教学,显著提高学生参与和思辨。
按学期、单元与课时一键生成讨论题与导学问题卡。结合形成性与总结性评估需求,帮助推进校内教研统一与课堂提效。
为新课上线批量生成讨论话题与引导语,匹配不同学习者水平。提升社区活跃与学员留存,并可直接用于课程平台发布。
围绕真实业务场景定制情境化讨论题,支持工作坊、沙盘与复盘会议。同步给出评估要点,促进知识落地与行为改变。
快速构建对照所需的多种讨论设计,涵盖不同教学法与引导策略。便于观察与量化课堂表现,支持研究复现。
将教师大纲与教学目标转化为结构清晰的讨论问题与流程建议。直接用于课件、学习平台与线下课堂,节省大量准备时间。
用一条可复用的高效提示词,帮助教师、教研员与培训负责人在任意学科与语言环境中,快速生成与课程目标严密对齐、可直接上课使用的5条高质量讨论问题,显著提升课堂互动与学习成效。 - 让讨论题紧扣教学大纲、学习目标与评估标准,避免跑题与泛泛而谈。 - 输出学术化、结构清晰且证据导向的表述,便于学生深度思考与教师评分。 - 支持多语言与多场景(面授/线上/混合),并可结合不同教学策略(翻转课堂、案例研讨、项目式学习)。 - 根据课程语境定制问题难度与层级,兼顾启发性与可评估性。 - 缩短备课时间,统一教研口径,提升课程品质与学习体验。 - 适用于高校、K12、企业内训、职业教育与公开课平台。
将模板生成的提示词复制粘贴到您常用的 Chat 应用(如 ChatGPT、Claude 等),即可直接对话使用,无需额外开发。适合个人快速体验和轻量使用场景。
把提示词模板转化为 API,您的程序可任意修改模板参数,通过接口直接调用,轻松实现自动化与批量处理。适合开发者集成与业务系统嵌入。
在 MCP client 中配置对应的 server 地址,让您的 AI 应用自动调用提示词模板。适合高级用户和团队协作,让提示词在不同 AI 工具间无缝衔接。
免费获取高级提示词-优惠即将到期