热门角色不仅是灵感来源,更是你的效率助手。通过精挑细选的角色提示词,你可以快速生成高质量内容、提升创作灵感,并找到最契合你需求的解决方案。让创作更轻松,让价值更直接!
我们根据不同用户需求,持续更新角色库,让你总能找到合适的灵感入口。
帮助设计课程反馈问卷问题,提供专业课程开发建议。
以下5个问项面向有机化学实验课程的关键学习成果(安全与风险管理、机理与概念整合、数据与证据评估、可持续与绿色化学、科学沟通与专业规范),以成果导向和构念一致性为原则构建,建议采用5点李克特量表(1=强烈不同意;2=不同意;3=中立;4=同意;5=强烈同意),便于量化分析与信度检验。核心维度与措辞依据化学教育与实验教学研究证据以及权威指南制定,确保可测量性与效度[1–7]。 1) 机理与概念整合 陈述:本课程有效提升了我运用有机反应机理解释实验现象与结果的能力(如中间体、选择性、速控与热控等的证据性判读)。 依据:实验促进概念理解与证据推理的作用已获广泛验证;课程目标应与实验任务对齐以支持高层次认知[1,3,7]。 2) 安全与RAMP风险管理 陈述:本课程使我能够依据RAMP原则(识别危害、评估风险、最小化风险、做好应急准备)开展有机实验的危害分析与控制(含合理选择工程/行政控制与PPE,并能查用GHS/SDS)。 依据:学术实验室安全的行为化能力(RAMP)是化学专业核心要求,需在课程中形成可迁移的安全素养[1–2]。 3) 数据素养与证据评估 陈述:本课程提升了我对实验数据进行规范记录与定量分析(含不确定度与误差来源评估)的能力,并能据光谱证据(1H/13C NMR、IR、MS)对产物结构作出有据可依的判定。 依据:数据质量、表征能力与可追溯记录是有机实验的关键学习产出,直接关联专业胜任力[1,3]。 4) 绿色化学与可持续实践 陈述:本课程促使我在试剂与溶剂选择、反应与后处理方案中应用绿色化学原则,并能使用定量指标(如原子经济性、E-factor)比较方案的环境绩效。 依据:将绿色化学原则与度量融入实验教学被证明可提升学生在真实情境中的可持续决策能力[1,4–5]。 5) 科学沟通与专业规范 陈述:本课程为我提供了规范的科学沟通训练(合规的实验记录、基于量规的书面报告与口头汇报、可重复性与学术诚信要求),帮助我达到学科写作与汇报标准。 依据:明确的沟通标准与基于标准的反馈能提升质量与可重复性,是化学专业素养的重要组成部分[1,6]。 参考文献(ACS格式) [1] ACS Committee on Professional Training. Undergraduate Professional Education in Chemistry: ACS Guidelines for Bachelor’s Degree Programs; American Chemical Society: Washington, DC, 2023. https://www.acs.org/education/policies/acs-guidelines.html [2] ACS Committee on Chemical Safety. Safety in Academic Chemistry Laboratories, 8th ed.; American Chemical Society: Washington, DC, 2017. [3] Hofstein, A.; Lunetta, V. N. The Laboratory in Science Education: Foundations for the Twenty-First Century. Science Education 2004, 88 (1), 28–54. https://doi.org/10.1002/sce.10106 [4] Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998. [5] Sheldon, R. A. The E Factor: Fifteen Years On. Green Chem. 2007, 9, 1273–1283. https://doi.org/10.1039/B713736M [6] The ACS Guide to Scholarly Communication; American Chemical Society and Oxford University Press: Washington, DC, 2020. https://pubs.acs.org/page/achemso/gtc [7] National Research Council. Discipline-Based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering; National Academies Press: Washington, DC, 2012. https://doi.org/10.17226/13362
Below are five evidence-based survey items suitable for an Introductory Python course. Each item targets a single construct, uses a five-point Likert scale (1 = Strongly disagree, 5 = Strongly agree), and is accompanied by a brief justification and sources. - Item 1 (Clarity of outcomes): The course learning outcomes were clearly stated and helped me understand the knowledge and skills I was expected to acquire. Rationale: Clear outcomes support constructive alignment between teaching, learning activities, and assessment, which is associated with improved coherence and learning quality (Biggs & Tang, 2011). - Item 2 (Cognitive load and scaffolding): The explanations, examples, and practice problems were appropriately scaffolded, minimizing unnecessary complexity while supporting step-by-step mastery of core Python concepts. Rationale: Instruction that manages intrinsic and extraneous cognitive load and uses scaffolding promotes efficient schema acquisition in novices (Sweller, Ayres, & Kalyuga, 2011). - Item 3 (Active learning and practice): In-class coding activities and labs required me to actively practice Python and contributed meaningfully to my understanding. Rationale: Active learning strategies, including practice and problem solving, are linked to higher performance in STEM courses compared to lecture-only formats (Freeman et al., 2014). - Item 4 (Feedback quality): Feedback on my code (for example, comments, test results, or rubrics) was timely and specific enough to help me correct errors and improve subsequent work. Rationale: Timely, specific feedback that guides improvement is associated with substantial gains in learning effectiveness (Hattie & Timperley, 2007; Black & Wiliam, 1998). - Item 5 (Programming self-efficacy): After completing this course, I am confident I can write small Python programs that use variables, control flow, functions, and basic data structures to solve introductory problems. Rationale: Self-efficacy beliefs are robust predictors of persistence and performance in skill acquisition contexts, including programming (Bandura, 1997). References - Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman. - Biggs, J., & Tang, C. (2011). Teaching for quality learning at university (4th ed.). Open University Press. - Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5(1), 7–74. - Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410–8415. - Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112. - Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. Springer.
论点陈述:为确保“领导力基础”课程反馈具有决策价值,问卷应覆盖学习成效(知识与能力)、教学设计质量(目标—活动—评估的一致性)、学习迁移准备度与情境支持,以及课堂心理安全等关键维度。这些维度与培训评估四层级模型、建构性对齐理论、迁移模型与心理安全研究相一致,能提高测量效度并指导有针对性的课程改进(Kirkpatrick & Kirkpatrick, 2006;Biggs & Tang, 2011;Baldwin & Ford, 1988;Edmondson, 1999;Bandura, 1997;Northouse, 2022)。 使用说明:建议采用5点Likert量表(1=完全不同意,5=完全同意),并为“不适用”单独设项以避免无效评分。 1) 知识增益(理论理解) 本课程显著提升了我对领导力核心概念与主要理论范式(如情境领导、变革型领导与权变视角)的理解深度与区分能力。(Kirkpatrick & Kirkpatrick, 2006;Northouse, 2022) 2) 技能自我效能(关键领导行为) 经过本课程学习,我在实施关键领导行为(如目标澄清、建设性反馈与有效沟通)方面的自我效能感得到实质提升。(Bandura, 1997;Northouse, 2022) 3) 教学设计一致性(建构性对齐) 课程的学习目标、教学活动与评估任务之间具有清晰且可感知的一致性,该对齐有效促进了我达成既定学习成果。(Biggs & Tang, 2011) 4) 学习迁移准备度(应用计划与动机) 我已形成将课程所学应用于具体工作/学习情境的可操作计划,并具备明确的实施动机与时间安排。(Kirkpatrick & Kirkpatrick, 2006;Baldwin & Ford, 1988) 5) 学习氛围(心理安全与深度学习) 课堂互动营造了鼓励提问、试错与表达不同观点的心理安全氛围,从而促进了我的积极参与与反思性学习。(Edmondson, 1999) 参考文献(APA第7版) - Baldwin, T. T., & Ford, J. K. (1988). Transfer of training: A review and directions for future research. Personnel Psychology, 41(1), 63–105. - Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman. - Biggs, J., & Tang, C. (2011). Teaching for quality learning at university (4th ed.). Open University Press. - Edmondson, A. C. (1999). Psychological safety and learning behavior in work teams. Administrative Science Quarterly, 44(2), 350–383. - Kirkpatrick, D. L., & Kirkpatrick, J. D. (2006). Evaluating training programs: The four levels (3rd ed.). Berrett-Koehler. - Northouse, P. G. (2022). Leadership: Theory and practice (9th ed.). SAGE.
快速生成符合学院质量保障要求的课程反馈问卷,区分讲授与实验环节,沉淀证据,支撑教学改进报告与课程认证。
为不同课程包一键定制问卷模板,统一指标口径,跨班级对比学习成效与满意度,指导讲师迭代并服务招生口碑。
面向岗前、在岗与领导力项目生成贴合胜任力模型的反馈问题,沉淀指标库,形成季度学习绩效复盘材料。
产出适配直播、录播与混合式课程的问卷,验证功能改版与学习路径优化效果,收集用户体验证据指导留存增长。
按学段与学科规范化题项,聚焦目标达成与评价公平,形成学情诊断与改进建议,支撑校内教研与督导评估。
为客户快速搭建高质量反馈问卷与洞察框架,缩短项目启动周期,提升交付可信度,促进复购与转介绍。
用一条可复用的高阶提示词,帮助教研与培训团队在数分钟内生成一套与课程目标强关联的高质量反馈问卷,并同步产出课程优化思路。核心价值:1) 问题更“准”——围绕学习目标、教学活动与评估环节逐一对齐,确保每题都能收集到可落地的数据;2) 过程更“快”——告别从零起草与来回改稿,直接得到结构清晰、表达正式的题干;3) 适用更“广”——从高校、K12到企业内训、在线职业课,不同学科与授课方式均可用;4) 输出更“专业”——默认采用学术化表达,便于用于公开评审、认证备案与跨地区投放;5) 转化更“强”——把反馈转成行动:自动提示改进方向与后续追问,帮助完成课程迭代闭环。典型收益:提升答卷有效性,缩短问卷设计周期,减少通用化问题带来的信息噪音,并为团队提供可升级的专业模板与协作空间(适合作为进阶付费权益)。
将模板生成的提示词复制粘贴到您常用的 Chat 应用(如 ChatGPT、Claude 等),即可直接对话使用,无需额外开发。适合个人快速体验和轻量使用场景。
把提示词模板转化为 API,您的程序可任意修改模板参数,通过接口直接调用,轻松实现自动化与批量处理。适合开发者集成与业务系统嵌入。
在 MCP client 中配置对应的 server 地址,让您的 AI 应用自动调用提示词模板。适合高级用户和团队协作,让提示词在不同 AI 工具间无缝衔接。
免费获取高级提示词-优惠即将到期