热门角色不仅是灵感来源,更是你的效率助手。通过精挑细选的角色提示词,你可以快速生成高质量内容、提升创作灵感,并找到最契合你需求的解决方案。让创作更轻松,让价值更直接!
我们根据不同用户需求,持续更新角色库,让你总能找到合适的灵感入口。
针对学习疑难问题,提供专业又易懂的解答和简明总结,同时推荐相关延伸学习主题,帮助用户快速理解知识点并激发学习兴趣。
{"answer":"一、用图像直觉把“连续”和“极限”讲清楚\n- 直觉图像:把函数画成一条曲线。极限 lim_{x→a} f(x) 关注的是“当x靠近a时,曲线的高度靠近哪个数”,不要求在a处有定义;连续则更强,它要求三件事同时成立:\n 1) f(a) 有定义;\n 2) lim_{x→a} f(x) 存在;\n 3) 两者相等:lim_{x→a} f(x) = f(a)。\n- 一句话记忆:极限是“靠近的趋势”,连续是“靠近的趋势恰好就是点上的值”。\n- 放到本题:g(x) = (sin 3x − 3x)/x^3 在 x=0 处没定义(分母为0),但我们仍可问“靠近0时它趋向哪个数”。这个极限一旦算出,如果把 g(0) 定义成这个极限值,整条曲线在0处就会“补上缺口”,成为连续,这叫“可去间断”。\n\n二、本题三种解法(逐步计算)\n1) 方法A:泰勒展开(最快)\n- 记住麦克劳林公式:sin u = u − u^3/3! + u^5/5! − …(要求用弧度)\n- 令 u = 3x:\n sin 3x = 3x − (3x)^3/3! + (3x)^5/5! − … = 3x − 27x^3/6 + 243x^5/120 − …\n- 则 sin 3x − 3x = −27x^3/6 + 更高阶项(O(x^5)) = −(9/2)x^3 + O(x^5)\n- 代回原式:\n (sin 3x − 3x)/x^3 = −27/6 + O(x^2) → −27/6 = −9/2。\n- 结论:极限为 −9/2。\n\n2) 方法B:标准极限 + 换元(也很快)\n- 标准极限:lim_{t→0} (sin t − t)/t^3 = −1/6。\n- 令 t = 3x,则\n (sin 3x − 3x)/x^3 = [(sin t − t)/t^3] · (t^3/x^3) = [(sin t − t)/t^3] · 27。\n- 当 x→0 时 t→0,所以极限 = 27·(−1/6) = −27/6 = −9/2。\n\n3) 方法C:洛必达法则(可行但步骤多)\n- 设 f(x) = sin 3x − 3x,g(x) = x^3。x→0 时是 0/0 型。\n- 第一次求导:f′(x) = 3cos 3x − 3,g′(x) = 3x^2,代0仍是0/0。\n- 第二次求导:f″(x) = −9 sin 3x,g″(x) = 6x,代0仍是0/0。\n- 第三次求导:f‴(x) = −27 cos 3x,g‴(x) = 6。\n- 代入 x=0:极限 = f‴(0)/g‴(0) = (−27·1)/6 = −27/6 = −9/2。\n\n三、洛必达 vs 泰勒:差异与取舍\n- 泰勒的优点:\n - 一步看出主导项与阶数,速度快;\n - 能给出更精细的近似(如误差阶 O(x^2))。\n- 洛必达的优点:\n - 不需要记太多展开式,只要会求导;\n - 对某些非多项/非初等展开的函数也适用。\n- 本题为何泰勒更快:\n - 这是“标准三角函数在0点”的典型情形,泰勒或标准极限一眼算出;\n - 洛必达要连用三次,且每次都要检查仍是0/0。\n- 实战建议:\n - 遇到“0点附近的三角、指数、对数”优先想标准极限/泰勒;\n - 表达式呈现明显的高阶行为(如分母 x^n)时,泰勒能立刻看出主导项;\n - 结构复杂、难直接展开或不熟悉展开时,再考虑洛必达。\n\n四、常见误区\n- 忘记弧度制:泰勒与标准极限都默认弧度。如果用角度,系数全错。\n- 将“有极限”误当成“连续”:连续还需函数在该点有定义且等于极限。本题原式在0不定义,只能谈极限;要连续需把0点值定义成极限值。\n- 泰勒代入时把 u=3x 忘了立方:sin x ≈ x − x^3/6 是对变量“x”的展开;换成 sin 3x,要把 (3x)^3/6 = 27x^3/6。\n- 洛必达少用或多用:\n - 第一次求导后仍是0/0要继续;\n - 不是0/0或 ∞/∞ 型时不能用;\n - 忽略“在邻域内可导且分母导数不为0”的前提。\n- 忘记“主导项”思想:分子若是三阶小量,分母是 x^3,极限会落在该三阶项的系数上。\n\n五、三条解题要点(速记)\n- 要点1:在0点附近,优先用标准极限或泰勒展开,抓主导项即得极限。\n- 要点2:把 sin u − u 看成 −u^3/6 + 高阶,遇到 sin(kx) 就是 −(k^3/6)x^3 + …\n- 要点3:洛必达能用时也要数清“需要几次”才能脱离0/0,并检查适用条件。\n\n六、答案\n- 极限值:−9/2。\n\n七、继续学习的建议\n- 多画图:把 y=sin 3x 与 y=3x 放在同一图上,观察两者在0处相切,sin 3x 在右侧略低于直线(所以差为负),而差值的量级是 x^3 级。\n- 背熟几个标准极限与常用泰勒展开:\n - sin x,cos x,e^x,ln(1+x) 的麦克劳林式;\n - lim_{x→0} sin x/x = 1,(1−cos x)/x^2 = 1/2,(e^x−1)/x = 1,(ln(1+x))/x = 1。\n- 学会用“主导项”和“小o/O 记号”判断高阶小量,快速预判结果。\n- 工具建议:用 Desmos 或 GeoGebra 动态观察曲线与“切线附近的偏离”。","answer_summary":"连续=极限等于函数值;极限只谈“靠近”不要求该点有定义。本题在0处的极限用泰勒或标准极限最快:sin 3x − 3x ≈ −(3x)^3/6,因此 (sin 3x − 3x)/x^3 → −27/6 = −9/2。洛必达也可,但需三次求导。牢记用弧度、注意主导项与方法适用条件。","related_topics":["ε-δ 连续与极限的严格定义","可去间断与函数延拓","标准极限大全与记忆法","麦克劳林/泰勒展开与余项估计","小o/O 记号与主导项思想","洛必达法则的使用条件与反例","三角函数的级数展开及应用","用图形工具直观理解极限与连续(Desmos/GeoGebra)"]}
{"answer":"Below is a clear, step-by-step walkthrough for one forward pass and the full backpropagation on your tiny network.\n\nSetup and conventions\n- Architecture: 2 inputs → 2 hidden ReLU units → 1 sigmoid output.\n- Shapes (row-vector convention):\n - x is 1×2, W1 is 2×2, b1 is 1×2\n - h is 1×2, W2 is 2×1, b2 is 1×1\n- Example: x = [0.6, 0.2], y = 1\n- Parameters:\n - W1 = [[0.1, -0.2], [0.05, 0.3]], b1 = [0.0, 0.1]\n - W2 = [[0.4], [-0.1]], b2 = [0.2]\n- Loss: binary cross-entropy (BCE) L = −[y·log(ŷ) + (1−y)·log(1−ŷ)]. With y=1, L = −log(ŷ).\n\nForward pass (numerical)\n1) Hidden pre-activation z1 = x @ W1 + b1\n - z1_0 = 0.60.1 + 0.20.05 + 0.0 = 0.07\n - z1_1 = 0.6*(−0.2) + 0.20.3 + 0.1 = −0.12 + 0.06 + 0.1 = 0.04\n - z1 = [0.07, 0.04]\n2) Hidden activation h = ReLU(z1) = [max(0,0.07), max(0,0.04)] = [0.07, 0.04]\n3) Output pre-activation z2 = h @ W2 + b2 = 0.070.4 + 0.04*(−0.1) + 0.2 = 0.028 − 0.004 + 0.2 = 0.224\n4) Output activation ŷ = sigmoid(z2) = 1 / (1 + exp(−0.224)) ≈ 0.556\n5) Loss L = −log(0.556) ≈ 0.586\n\nBackpropagation (node-by-node, showing chain rule)\nCore local derivatives\n- For BCE + sigmoid, a key simplification: dL/dz2 = ŷ − y. This comes from chain rule: dL/dŷ · dŷ/dz2, where dL/dŷ = −(y/ŷ) + (1−y)/(1−ŷ), and dŷ/dz2 = ŷ(1−ŷ). With y=1 this reduces to dL/dz2 = ŷ − 1.\n- ReLU'(z1_i) = 1 if z1_i > 0 else 0.\n\nStart from the loss and go backward\nA) Output layer\n- dL/dz2 = ŷ − y ≈ 0.556 − 1 = −0.444\n- Gradients for W2 and b2 use dz2/dW2 = h and dz2/db2 = 1:\n - dL/dW2 = h^T · dL/dz2 →\n - dW2[0,0] = 0.07 * (−0.444) ≈ −0.03108\n - dW2[1,0] = 0.04 * (−0.444) ≈ −0.01776\n - dL/db2 = dL/dz2 ≈ −0.444\n- Backprop to hidden activations h: dz2/dh_i = W2[i,0]\n - dL/dh = [ (−0.444)0.4, (−0.444)(−0.1) ] ≈ [ −0.1776, 0.0444 ]\n\nB) Hidden ReLU layer\n- Since z1 = [0.07, 0.04] > 0, ReLU' = [1, 1]. Thus dL/dz1 = dL/dh ⊙ ReLU'(z1) = [ −0.1776, 0.0444 ]\n\nC) First (input→hidden) affine layer\n- z1 = x @ W1 + b1, so:\n - dL/dW1[i,j] = x[i] * dL/dz1[j]\n - dL/db1 = dL/dz1\n- Numerical gradients:\n - For hidden unit 0 (j=0, dL/dz1_0 = −0.1776):\n - dW1[0,0] = 0.6 * (−0.1776) = −0.10656\n - dW1[1,0] = 0.2 * (−0.1776) = −0.03552\n - For hidden unit 1 (j=1, dL/dz1_1 = 0.0444):\n - dW1[0,1] = 0.6 * 0.0444 = 0.02664\n - dW1[1,1] = 0.2 * 0.0444 = 0.00888\n - dL/db1 = [ −0.1776, 0.0444 ]\n- (Optional) Gradient w.r.t input x for completeness: dL/dx = dL/dz1 @ W1^T\n - dL/dx_0 = (−0.1776)0.1 + 0.0444(−0.2) = −0.01776 − 0.00888 = −0.02664\n - dL/dx_1 = (−0.1776)0.05 + 0.04440.3 = −0.00888 + 0.01332 = 0.00444\n\nWhere the chain rule appears (intuitively)\n- Loss → logit z2: dL/dz2 = (dL/dŷ) · (dŷ/dz2). This is the classic BCE+sigmoid simplification to ŷ−y.\n- z2 → W2, b2, h: dL/dW2 = (dL/dz2) · (dz2/dW2) with dz2/dW2 = h; dL/db2 = dL/dz2; dL/dh = (dL/dz2) · W2.\n- h → z1 via ReLU: dL/dz1 = dL/dh ⊙ ReLU'(z1). ReLU gates the gradient (passes it or zeroes it).\n- z1 → W1, b1, x: dL/dW1 = x^T · dL/dz1, dL/db1 = dL/dz1, dL/dx = dL/dz1 · W1^T.\nAt each arrow, you multiply the upstream gradient by the local derivative—this repeated multiplication is the chain rule.\n\nHow vanishing/exploding gradients can happen in deeper nets\n- Vanishing:\n - Sigmoid/tanh saturation: If many layers output logits far from 0, the derivatives σ'(z) = σ(z)(1−σ(z)) ≤ 0.25 become tiny. Multiplying many small numbers makes upstream gradients shrink toward 0.\n - ReLU “dead” units: If z < 0, ReLU' = 0, and gradient flow stops. If many layers are dead, gradients vanish.\n - Poor initialization (too small weights) or strong regularization can also attenuate gradients.\n- Exploding:\n - Large weights cause large activations and thus large local derivatives (especially with non-saturating activations). Multiplying several large factors makes gradients blow up.\n- Common remedies:\n - Careful initialization (Xavier/Glorot for tanh/sigmoid; He/Kaiming for ReLU).\n - Normalization (BatchNorm/LayerNorm) to keep activations in reasonable ranges.\n - Residual connections (ResNets) shorten effective gradient paths.\n - Gradient clipping to cap extremely large gradients.\n - Use activations less prone to saturation (ReLU/LeakyReLU, GELU) and appropriate learning rates.\n\nSanity checks you can do\n- Numerical gradient check: perturb a weight slightly and compare finite-difference estimate of dL/dw with backprop’s result.\n- Monitor activation distributions and gradient norms layer by layer during training to spot vanishing/exploding early.\n\nMini summary\n- Forward: z1=[0.07, 0.04] → h=[0.07, 0.04] → z2=0.224 → ŷ≈0.556 → L≈0.586.\n- Backward key scalar: dL/dz2=ŷ−y≈−0.444.\n- Gradients: dW2≈[−0.03108, −0.01776]^T, db2≈−0.444; dW1≈[[−0.10656, 0.02664],[−0.03552, 0.00888]], db1≈[−0.1776, 0.0444].\n- Chain rule appears at every edge: upstream gradient × local derivative. Deep nets multiply many such terms, which can shrink or blow up.\n\nFollow-up practice ideas\n- Redo the same exercise with z1 negative (to see ReLU blocking gradients) and with z2 very large magnitude (to see sigmoid saturation).\n- Vectorize the derivations using matrix calculus to see how backprop is just a sequence of matrix multiplications and elementwise products.\n- Implement this network and gradients in a few lines of Python/NumPy and compare with automatic differentiation libraries.\n","answer_summary":"Forward: z1=[0.07, 0.04] → h=[0.07, 0.04] → z2=0.224 → ŷ≈0.556 → loss≈0.586. Backward: dL/dz2=ŷ−y≈−0.444. Then dW2≈[−0.03108, −0.01776], db2≈−0.444; dL/dh≈[−0.1776, 0.0444]; through ReLU dL/dz1 same; dW1≈[[−0.10656, 0.02664],[−0.03552, 0.00888]], db1≈[−0.1776, 0.0444]. Chain rule = upstream gradient × local derivative at each node. Vanishing arises from small derivatives (sigmoid saturation, dead ReLUs); exploding from large weights/derivatives. Use good initialization, normalization, residuals, and clipping to mitigate.","related_topics":["Computational graphs and automatic differentiation","Matrix calculus for backpropagation","Activation functions (ReLU, LeakyReLU, GELU, sigmoid, tanh)","Weight initialization (Xavier/Glorot, He/Kaiming)","BatchNorm and LayerNorm","Residual networks (ResNets) and skip connections","Gradient clipping and optimizer choice","Numerical gradient checking","Loss functions for classification (BCE vs. softmax cross-entropy)"]}
{"answer":"Conexión general (idea simple):\n- Piensa en la respiración celular como una central eléctrica: la glucólisis rompe la glucosa en piezas útiles (piruvato) y carga algunas “baterías” pequeñas (NADH); el complejo piruvato deshidrogenasa abre la puerta a la mitocondria y convierte el piruvato en acetil‑CoA; el ciclo de Krebs (TCA) extrae electrones y llena baterías grandes (NADH y FADH2); la cadena de transporte de electrones (CTE) usa esas baterías para bombear protones y mover una turbina (ATP sintasa) que fabrica ATP.\n\nDiagrama mental paso a paso (texto):\nGlucosa (citoplasma)\n→ glucólisis → 2 piruvato + 2 ATP (netos) + 2 NADH\n→ transporte al mitocondrio\n→ piruvato deshidrogenasa → 2 acetil‑CoA + 2 NADH + 2 CO2\n→ ciclo de Krebs (por 2 acetil‑CoA) → 6 NADH + 2 FADH2 + 2 GTP(=ATP) + 4 CO2\n→ CTE + ATP sintasa → ATP a partir de NADH y FADH2 (en presencia de O2)\n\nRendimientos por etapa (por 1 glucosa, condiciones aeróbicas):\n- Glucólisis: 2 ATP netos; 2 NADH (citoplasmáticos).\n- Conversión de piruvato a acetil‑CoA (PDH): 2 NADH.\n- Ciclo de Krebs (2 vueltas): 6 NADH; 2 FADH2; 2 GTP (equivalen a 2 ATP).\nTotales de cofactores generados: 10 NADH; 2 FADH2; ATP/GTP por sustrato: 4 (2 ATP de glucólisis + 2 GTP del TCA).\n\nATP aproximado total (depende del “shuttle” de NADH citosólico):\n- Si el NADH de glucólisis entra vía lanzadera malato‑aspartato (rinde ~2.5 ATP por NADH):\n • NADH: 10 × 2.5 ≈ 25 ATP\n • FADH2: 2 × 1.5 ≈ 3 ATP\n • Sustrato: 4 ATP\n → Total ≈ 32 ATP por glucosa.\n- Si entra vía lanzadera glicerol‑3‑fosfato (los 2 NADH citosólicos rinden ~1.5 ATP equivalentes):\n • NADH: 8 × 2.5 ≈ 20 ATP (mitocondriales) + 2 citosólicos ≈ 3 ATP\n • FADH2: 2 × 1.5 ≈ 3 ATP\n • Sustrato: 4 ATP\n → Total ≈ 30 ATP por glucosa.\nNota: valores son aproximados; el rendimiento real varía por tejido, estado metabólico y acoplamiento mitocondrial.\n\nPuntos clave de regulación (control del flujo):\n- Glucólisis:\n • Hexocinasa/glucocinasa: inhibición por G6P (hexocinasa); la glucocinasa se regula por disponibilidad hepática y F6P (secuestro en el núcleo).\n • PFK‑1 (paso limitante): activada por AMP/ADP y fructosa‑2,6‑bisfosfato; inhibida por ATP, citrato y acidosis (H+).\n • Piruvato quinasa: activada por F1,6BP; inhibida por ATP y alanina; en hígado se inhibe por fosforilación (glucagón).\n- Complejo piruvato deshidrogenasa (PDH): inhibido por acetil‑CoA y NADH; activado por ADP y piruvato; regulación por fosforilación (PDH cinasa/ fosfatasa). Requiere cofactores como TPP (vitamina B1).\n- Ciclo de Krebs:\n • Isocitrato deshidrogenasa: activada por ADP y Ca2+; inhibida por ATP y NADH.\n • α‑cetoglutarato deshidrogenasa: inhibida por NADH y succinil‑CoA; activada por Ca2+.\n • Citrato sintasa: sensible a disponibilidad de oxaloacetato y acetil‑CoA.\n- CTE/oxidativa: “control respiratorio” por disponibilidad de ADP (estado energético) y O2; desacoplamiento disminuye rendimiento de ATP.\n\nAnalogía sencilla:\n- Glucólisis = cortar leña y obtener chispas rápidas (ATP y NADH pequeños).\n- PDH = la puerta al horno.\n- Ciclo de Krebs = el horno que convierte leña en baterías cargadas (NADH/FADH2).\n- CTE + ATP sintasa = la turbina que usa el gradiente de protones para generar electricidad (ATP).\n\nResumen (5 líneas):\n- Una glucosa se convierte en 2 piruvatos con 2 ATP netos y 2 NADH en glucólisis.\n- PDH transforma los 2 piruvatos en 2 acetil‑CoA y produce 2 NADH.\n- El ciclo de Krebs (2 vueltas) genera 6 NADH, 2 FADH2 y 2 GTP.\n- La CTE convierte NADH (~2.5 ATP) y FADH2 (~1.5 ATP) en ATP; total ≈ 30–32 ATP.\n- La vía se regula sobre todo en PFK‑1, piruvato quinasa, PDH e isocitrato/α‑KG deshidrogenasas.\n\nRecomendaciones para profundizar:\n- Comparar lanzaderas malato‑aspartato vs glicerol‑3‑fosfato y su impacto en rendimiento.\n- Respiración mitocondrial: complejos I–IV, ATP sintasa, P/O y acoplamiento.\n- Regulación hormonal (insulina, glucagón) y control alostérico de la glucólisis.\n- Estados de ayuno/ejercicio: destino del piruvato (lactato vs acetil‑CoA) y anaplerosis.\n- Inhibidores y desacopladores (cianuro, rotenona, oligomicina, DNP) y su fisiología.","answer_summary":"Partiendo de 1 glucosa: glucólisis da 2 ATP netos y 2 NADH; PDH añade 2 NADH; el ciclo de Krebs aporta 6 NADH, 2 FADH2 y 2 GTP. En total, 10 NADH, 2 FADH2 y 4 ATP/GTP por sustrato. La CTE convierte esto en ≈ 30–32 ATP según la lanzadera usada. La regulación clave ocurre en PFK‑1, piruvato quinasa, PDH e isocitrato/α‑KG deshidrogenasas.","related_topics":["Lanzaderas de NADH (malato‑aspartato vs glicerol‑3‑fosfato)","Complejos de la cadena respiratoria y ATP sintasa","Regulación hormonal de la glucólisis y gluconeogénesis","Anaplerosis y cataplerosis en el ciclo de Krebs","Desacopladores e inhibidores de la fosforilación oxidativa"]}
为学习者提供权威、简单易懂的学习指导,帮助其轻松解决疑难问题,并激发对知识的兴趣。
为正在学校学习的学生提供清晰易懂的学术指导,例如数学公式的分步骤解析或历史背景知识的简明总结。
帮助职场人士快速理解行业知识或实用技能,例如用简单语言解读技术原理或市场趋势。
为希望自我提升的个人解决跨领域学习困难,例如提供文学、科学或编程等领域的基础知识支持。
将模板生成的提示词复制粘贴到您常用的 Chat 应用(如 ChatGPT、Claude 等),即可直接对话使用,无需额外开发。适合个人快速体验和轻量使用场景。
把提示词模板转化为 API,您的程序可任意修改模板参数,通过接口直接调用,轻松实现自动化与批量处理。适合开发者集成与业务系统嵌入。
在 MCP client 中配置对应的 server 地址,让您的 AI 应用自动调用提示词模板。适合高级用户和团队协作,让提示词在不同 AI 工具间无缝衔接。
半价获取高级提示词-优惠即将到期