¥
立即购买

学习问题解答

461 浏览
44 试用
9 购买
Nov 10, 2025更新

针对学习疑难问题,提供专业又易懂的解答和简明总结,同时推荐相关延伸学习主题,帮助用户快速理解知识点并激发学习兴趣。

{"answer":"一、用图像直觉把“连续”和“极限”讲清楚\n- 直觉图像:把函数画成一条曲线。极限 lim_{x→a} f(x) 关注的是“当x靠近a时,曲线的高度靠近哪个数”,不要求在a处有定义;连续则更强,它要求三件事同时成立:\n 1) f(a) 有定义;\n 2) lim_{x→a} f(x) 存在;\n 3) 两者相等:lim_{x→a} f(x) = f(a)。\n- 一句话记忆:极限是“靠近的趋势”,连续是“靠近的趋势恰好就是点上的值”。\n- 放到本题:g(x) = (sin 3x − 3x)/x^3 在 x=0 处没定义(分母为0),但我们仍可问“靠近0时它趋向哪个数”。这个极限一旦算出,如果把 g(0) 定义成这个极限值,整条曲线在0处就会“补上缺口”,成为连续,这叫“可去间断”。\n\n二、本题三种解法(逐步计算)\n1) 方法A:泰勒展开(最快)\n- 记住麦克劳林公式:sin u = u − u^3/3! + u^5/5! − …(要求用弧度)\n- 令 u = 3x:\n sin 3x = 3x − (3x)^3/3! + (3x)^5/5! − … = 3x − 27x^3/6 + 243x^5/120 − …\n- 则 sin 3x − 3x = −27x^3/6 + 更高阶项(O(x^5)) = −(9/2)x^3 + O(x^5)\n- 代回原式:\n (sin 3x − 3x)/x^3 = −27/6 + O(x^2) → −27/6 = −9/2。\n- 结论:极限为 −9/2。\n\n2) 方法B:标准极限 + 换元(也很快)\n- 标准极限:lim_{t→0} (sin t − t)/t^3 = −1/6。\n- 令 t = 3x,则\n (sin 3x − 3x)/x^3 = [(sin t − t)/t^3] · (t^3/x^3) = [(sin t − t)/t^3] · 27。\n- 当 x→0 时 t→0,所以极限 = 27·(−1/6) = −27/6 = −9/2。\n\n3) 方法C:洛必达法则(可行但步骤多)\n- 设 f(x) = sin 3x − 3x,g(x) = x^3。x→0 时是 0/0 型。\n- 第一次求导:f′(x) = 3cos 3x − 3,g′(x) = 3x^2,代0仍是0/0。\n- 第二次求导:f″(x) = −9 sin 3x,g″(x) = 6x,代0仍是0/0。\n- 第三次求导:f‴(x) = −27 cos 3x,g‴(x) = 6。\n- 代入 x=0:极限 = f‴(0)/g‴(0) = (−27·1)/6 = −27/6 = −9/2。\n\n三、洛必达 vs 泰勒:差异与取舍\n- 泰勒的优点:\n - 一步看出主导项与阶数,速度快;\n - 能给出更精细的近似(如误差阶 O(x^2))。\n- 洛必达的优点:\n - 不需要记太多展开式,只要会求导;\n - 对某些非多项/非初等展开的函数也适用。\n- 本题为何泰勒更快:\n - 这是“标准三角函数在0点”的典型情形,泰勒或标准极限一眼算出;\n - 洛必达要连用三次,且每次都要检查仍是0/0。\n- 实战建议:\n - 遇到“0点附近的三角、指数、对数”优先想标准极限/泰勒;\n - 表达式呈现明显的高阶行为(如分母 x^n)时,泰勒能立刻看出主导项;\n - 结构复杂、难直接展开或不熟悉展开时,再考虑洛必达。\n\n四、常见误区\n- 忘记弧度制:泰勒与标准极限都默认弧度。如果用角度,系数全错。\n- 将“有极限”误当成“连续”:连续还需函数在该点有定义且等于极限。本题原式在0不定义,只能谈极限;要连续需把0点值定义成极限值。\n- 泰勒代入时把 u=3x 忘了立方:sin x ≈ x − x^3/6 是对变量“x”的展开;换成 sin 3x,要把 (3x)^3/6 = 27x^3/6。\n- 洛必达少用或多用:\n - 第一次求导后仍是0/0要继续;\n - 不是0/0或 ∞/∞ 型时不能用;\n - 忽略“在邻域内可导且分母导数不为0”的前提。\n- 忘记“主导项”思想:分子若是三阶小量,分母是 x^3,极限会落在该三阶项的系数上。\n\n五、三条解题要点(速记)\n- 要点1:在0点附近,优先用标准极限或泰勒展开,抓主导项即得极限。\n- 要点2:把 sin u − u 看成 −u^3/6 + 高阶,遇到 sin(kx) 就是 −(k^3/6)x^3 + …\n- 要点3:洛必达能用时也要数清“需要几次”才能脱离0/0,并检查适用条件。\n\n六、答案\n- 极限值:−9/2。\n\n七、继续学习的建议\n- 多画图:把 y=sin 3x 与 y=3x 放在同一图上,观察两者在0处相切,sin 3x 在右侧略低于直线(所以差为负),而差值的量级是 x^3 级。\n- 背熟几个标准极限与常用泰勒展开:\n - sin x,cos x,e^x,ln(1+x) 的麦克劳林式;\n - lim_{x→0} sin x/x = 1,(1−cos x)/x^2 = 1/2,(e^x−1)/x = 1,(ln(1+x))/x = 1。\n- 学会用“主导项”和“小o/O 记号”判断高阶小量,快速预判结果。\n- 工具建议:用 Desmos 或 GeoGebra 动态观察曲线与“切线附近的偏离”。","answer_summary":"连续=极限等于函数值;极限只谈“靠近”不要求该点有定义。本题在0处的极限用泰勒或标准极限最快:sin 3x − 3x ≈ −(3x)^3/6,因此 (sin 3x − 3x)/x^3 → −27/6 = −9/2。洛必达也可,但需三次求导。牢记用弧度、注意主导项与方法适用条件。","related_topics":["ε-δ 连续与极限的严格定义","可去间断与函数延拓","标准极限大全与记忆法","麦克劳林/泰勒展开与余项估计","小o/O 记号与主导项思想","洛必达法则的使用条件与反例","三角函数的级数展开及应用","用图形工具直观理解极限与连续(Desmos/GeoGebra)"]}

{"answer":"Below is a clear, step-by-step walkthrough for one forward pass and the full backpropagation on your tiny network.\n\nSetup and conventions\n- Architecture: 2 inputs → 2 hidden ReLU units → 1 sigmoid output.\n- Shapes (row-vector convention):\n - x is 1×2, W1 is 2×2, b1 is 1×2\n - h is 1×2, W2 is 2×1, b2 is 1×1\n- Example: x = [0.6, 0.2], y = 1\n- Parameters:\n - W1 = [[0.1, -0.2], [0.05, 0.3]], b1 = [0.0, 0.1]\n - W2 = [[0.4], [-0.1]], b2 = [0.2]\n- Loss: binary cross-entropy (BCE) L = −[y·log(ŷ) + (1−y)·log(1−ŷ)]. With y=1, L = −log(ŷ).\n\nForward pass (numerical)\n1) Hidden pre-activation z1 = x @ W1 + b1\n - z1_0 = 0.60.1 + 0.20.05 + 0.0 = 0.07\n - z1_1 = 0.6*(−0.2) + 0.20.3 + 0.1 = −0.12 + 0.06 + 0.1 = 0.04\n - z1 = [0.07, 0.04]\n2) Hidden activation h = ReLU(z1) = [max(0,0.07), max(0,0.04)] = [0.07, 0.04]\n3) Output pre-activation z2 = h @ W2 + b2 = 0.070.4 + 0.04*(−0.1) + 0.2 = 0.028 − 0.004 + 0.2 = 0.224\n4) Output activation ŷ = sigmoid(z2) = 1 / (1 + exp(−0.224)) ≈ 0.556\n5) Loss L = −log(0.556) ≈ 0.586\n\nBackpropagation (node-by-node, showing chain rule)\nCore local derivatives\n- For BCE + sigmoid, a key simplification: dL/dz2 = ŷ − y. This comes from chain rule: dL/dŷ · dŷ/dz2, where dL/dŷ = −(y/ŷ) + (1−y)/(1−ŷ), and dŷ/dz2 = ŷ(1−ŷ). With y=1 this reduces to dL/dz2 = ŷ − 1.\n- ReLU'(z1_i) = 1 if z1_i > 0 else 0.\n\nStart from the loss and go backward\nA) Output layer\n- dL/dz2 = ŷ − y ≈ 0.556 − 1 = −0.444\n- Gradients for W2 and b2 use dz2/dW2 = h and dz2/db2 = 1:\n - dL/dW2 = h^T · dL/dz2 →\n - dW2[0,0] = 0.07 * (−0.444) ≈ −0.03108\n - dW2[1,0] = 0.04 * (−0.444) ≈ −0.01776\n - dL/db2 = dL/dz2 ≈ −0.444\n- Backprop to hidden activations h: dz2/dh_i = W2[i,0]\n - dL/dh = [ (−0.444)0.4, (−0.444)(−0.1) ] ≈ [ −0.1776, 0.0444 ]\n\nB) Hidden ReLU layer\n- Since z1 = [0.07, 0.04] > 0, ReLU' = [1, 1]. Thus dL/dz1 = dL/dh ⊙ ReLU'(z1) = [ −0.1776, 0.0444 ]\n\nC) First (input→hidden) affine layer\n- z1 = x @ W1 + b1, so:\n - dL/dW1[i,j] = x[i] * dL/dz1[j]\n - dL/db1 = dL/dz1\n- Numerical gradients:\n - For hidden unit 0 (j=0, dL/dz1_0 = −0.1776):\n - dW1[0,0] = 0.6 * (−0.1776) = −0.10656\n - dW1[1,0] = 0.2 * (−0.1776) = −0.03552\n - For hidden unit 1 (j=1, dL/dz1_1 = 0.0444):\n - dW1[0,1] = 0.6 * 0.0444 = 0.02664\n - dW1[1,1] = 0.2 * 0.0444 = 0.00888\n - dL/db1 = [ −0.1776, 0.0444 ]\n- (Optional) Gradient w.r.t input x for completeness: dL/dx = dL/dz1 @ W1^T\n - dL/dx_0 = (−0.1776)0.1 + 0.0444(−0.2) = −0.01776 − 0.00888 = −0.02664\n - dL/dx_1 = (−0.1776)0.05 + 0.04440.3 = −0.00888 + 0.01332 = 0.00444\n\nWhere the chain rule appears (intuitively)\n- Loss → logit z2: dL/dz2 = (dL/dŷ) · (dŷ/dz2). This is the classic BCE+sigmoid simplification to ŷ−y.\n- z2 → W2, b2, h: dL/dW2 = (dL/dz2) · (dz2/dW2) with dz2/dW2 = h; dL/db2 = dL/dz2; dL/dh = (dL/dz2) · W2.\n- h → z1 via ReLU: dL/dz1 = dL/dh ⊙ ReLU'(z1). ReLU gates the gradient (passes it or zeroes it).\n- z1 → W1, b1, x: dL/dW1 = x^T · dL/dz1, dL/db1 = dL/dz1, dL/dx = dL/dz1 · W1^T.\nAt each arrow, you multiply the upstream gradient by the local derivative—this repeated multiplication is the chain rule.\n\nHow vanishing/exploding gradients can happen in deeper nets\n- Vanishing:\n - Sigmoid/tanh saturation: If many layers output logits far from 0, the derivatives σ'(z) = σ(z)(1−σ(z)) ≤ 0.25 become tiny. Multiplying many small numbers makes upstream gradients shrink toward 0.\n - ReLU “dead” units: If z < 0, ReLU' = 0, and gradient flow stops. If many layers are dead, gradients vanish.\n - Poor initialization (too small weights) or strong regularization can also attenuate gradients.\n- Exploding:\n - Large weights cause large activations and thus large local derivatives (especially with non-saturating activations). Multiplying several large factors makes gradients blow up.\n- Common remedies:\n - Careful initialization (Xavier/Glorot for tanh/sigmoid; He/Kaiming for ReLU).\n - Normalization (BatchNorm/LayerNorm) to keep activations in reasonable ranges.\n - Residual connections (ResNets) shorten effective gradient paths.\n - Gradient clipping to cap extremely large gradients.\n - Use activations less prone to saturation (ReLU/LeakyReLU, GELU) and appropriate learning rates.\n\nSanity checks you can do\n- Numerical gradient check: perturb a weight slightly and compare finite-difference estimate of dL/dw with backprop’s result.\n- Monitor activation distributions and gradient norms layer by layer during training to spot vanishing/exploding early.\n\nMini summary\n- Forward: z1=[0.07, 0.04] → h=[0.07, 0.04] → z2=0.224 → ŷ≈0.556 → L≈0.586.\n- Backward key scalar: dL/dz2=ŷ−y≈−0.444.\n- Gradients: dW2≈[−0.03108, −0.01776]^T, db2≈−0.444; dW1≈[[−0.10656, 0.02664],[−0.03552, 0.00888]], db1≈[−0.1776, 0.0444].\n- Chain rule appears at every edge: upstream gradient × local derivative. Deep nets multiply many such terms, which can shrink or blow up.\n\nFollow-up practice ideas\n- Redo the same exercise with z1 negative (to see ReLU blocking gradients) and with z2 very large magnitude (to see sigmoid saturation).\n- Vectorize the derivations using matrix calculus to see how backprop is just a sequence of matrix multiplications and elementwise products.\n- Implement this network and gradients in a few lines of Python/NumPy and compare with automatic differentiation libraries.\n","answer_summary":"Forward: z1=[0.07, 0.04] → h=[0.07, 0.04] → z2=0.224 → ŷ≈0.556 → loss≈0.586. Backward: dL/dz2=ŷ−y≈−0.444. Then dW2≈[−0.03108, −0.01776], db2≈−0.444; dL/dh≈[−0.1776, 0.0444]; through ReLU dL/dz1 same; dW1≈[[−0.10656, 0.02664],[−0.03552, 0.00888]], db1≈[−0.1776, 0.0444]. Chain rule = upstream gradient × local derivative at each node. Vanishing arises from small derivatives (sigmoid saturation, dead ReLUs); exploding from large weights/derivatives. Use good initialization, normalization, residuals, and clipping to mitigate.","related_topics":["Computational graphs and automatic differentiation","Matrix calculus for backpropagation","Activation functions (ReLU, LeakyReLU, GELU, sigmoid, tanh)","Weight initialization (Xavier/Glorot, He/Kaiming)","BatchNorm and LayerNorm","Residual networks (ResNets) and skip connections","Gradient clipping and optimizer choice","Numerical gradient checking","Loss functions for classification (BCE vs. softmax cross-entropy)"]}

{"answer":"Conexión general (idea simple):\n- Piensa en la respiración celular como una central eléctrica: la glucólisis rompe la glucosa en piezas útiles (piruvato) y carga algunas “baterías” pequeñas (NADH); el complejo piruvato deshidrogenasa abre la puerta a la mitocondria y convierte el piruvato en acetil‑CoA; el ciclo de Krebs (TCA) extrae electrones y llena baterías grandes (NADH y FADH2); la cadena de transporte de electrones (CTE) usa esas baterías para bombear protones y mover una turbina (ATP sintasa) que fabrica ATP.\n\nDiagrama mental paso a paso (texto):\nGlucosa (citoplasma)\n→ glucólisis → 2 piruvato + 2 ATP (netos) + 2 NADH\n→ transporte al mitocondrio\n→ piruvato deshidrogenasa → 2 acetil‑CoA + 2 NADH + 2 CO2\n→ ciclo de Krebs (por 2 acetil‑CoA) → 6 NADH + 2 FADH2 + 2 GTP(=ATP) + 4 CO2\n→ CTE + ATP sintasa → ATP a partir de NADH y FADH2 (en presencia de O2)\n\nRendimientos por etapa (por 1 glucosa, condiciones aeróbicas):\n- Glucólisis: 2 ATP netos; 2 NADH (citoplasmáticos).\n- Conversión de piruvato a acetil‑CoA (PDH): 2 NADH.\n- Ciclo de Krebs (2 vueltas): 6 NADH; 2 FADH2; 2 GTP (equivalen a 2 ATP).\nTotales de cofactores generados: 10 NADH; 2 FADH2; ATP/GTP por sustrato: 4 (2 ATP de glucólisis + 2 GTP del TCA).\n\nATP aproximado total (depende del “shuttle” de NADH citosólico):\n- Si el NADH de glucólisis entra vía lanzadera malato‑aspartato (rinde ~2.5 ATP por NADH):\n • NADH: 10 × 2.5 ≈ 25 ATP\n • FADH2: 2 × 1.5 ≈ 3 ATP\n • Sustrato: 4 ATP\n → Total ≈ 32 ATP por glucosa.\n- Si entra vía lanzadera glicerol‑3‑fosfato (los 2 NADH citosólicos rinden ~1.5 ATP equivalentes):\n • NADH: 8 × 2.5 ≈ 20 ATP (mitocondriales) + 2 citosólicos ≈ 3 ATP\n • FADH2: 2 × 1.5 ≈ 3 ATP\n • Sustrato: 4 ATP\n → Total ≈ 30 ATP por glucosa.\nNota: valores son aproximados; el rendimiento real varía por tejido, estado metabólico y acoplamiento mitocondrial.\n\nPuntos clave de regulación (control del flujo):\n- Glucólisis:\n • Hexocinasa/glucocinasa: inhibición por G6P (hexocinasa); la glucocinasa se regula por disponibilidad hepática y F6P (secuestro en el núcleo).\n • PFK‑1 (paso limitante): activada por AMP/ADP y fructosa‑2,6‑bisfosfato; inhibida por ATP, citrato y acidosis (H+).\n • Piruvato quinasa: activada por F1,6BP; inhibida por ATP y alanina; en hígado se inhibe por fosforilación (glucagón).\n- Complejo piruvato deshidrogenasa (PDH): inhibido por acetil‑CoA y NADH; activado por ADP y piruvato; regulación por fosforilación (PDH cinasa/ fosfatasa). Requiere cofactores como TPP (vitamina B1).\n- Ciclo de Krebs:\n • Isocitrato deshidrogenasa: activada por ADP y Ca2+; inhibida por ATP y NADH.\n • α‑cetoglutarato deshidrogenasa: inhibida por NADH y succinil‑CoA; activada por Ca2+.\n • Citrato sintasa: sensible a disponibilidad de oxaloacetato y acetil‑CoA.\n- CTE/oxidativa: “control respiratorio” por disponibilidad de ADP (estado energético) y O2; desacoplamiento disminuye rendimiento de ATP.\n\nAnalogía sencilla:\n- Glucólisis = cortar leña y obtener chispas rápidas (ATP y NADH pequeños).\n- PDH = la puerta al horno.\n- Ciclo de Krebs = el horno que convierte leña en baterías cargadas (NADH/FADH2).\n- CTE + ATP sintasa = la turbina que usa el gradiente de protones para generar electricidad (ATP).\n\nResumen (5 líneas):\n- Una glucosa se convierte en 2 piruvatos con 2 ATP netos y 2 NADH en glucólisis.\n- PDH transforma los 2 piruvatos en 2 acetil‑CoA y produce 2 NADH.\n- El ciclo de Krebs (2 vueltas) genera 6 NADH, 2 FADH2 y 2 GTP.\n- La CTE convierte NADH (~2.5 ATP) y FADH2 (~1.5 ATP) en ATP; total ≈ 30–32 ATP.\n- La vía se regula sobre todo en PFK‑1, piruvato quinasa, PDH e isocitrato/α‑KG deshidrogenasas.\n\nRecomendaciones para profundizar:\n- Comparar lanzaderas malato‑aspartato vs glicerol‑3‑fosfato y su impacto en rendimiento.\n- Respiración mitocondrial: complejos I–IV, ATP sintasa, P/O y acoplamiento.\n- Regulación hormonal (insulina, glucagón) y control alostérico de la glucólisis.\n- Estados de ayuno/ejercicio: destino del piruvato (lactato vs acetil‑CoA) y anaplerosis.\n- Inhibidores y desacopladores (cianuro, rotenona, oligomicina, DNP) y su fisiología.","answer_summary":"Partiendo de 1 glucosa: glucólisis da 2 ATP netos y 2 NADH; PDH añade 2 NADH; el ciclo de Krebs aporta 6 NADH, 2 FADH2 y 2 GTP. En total, 10 NADH, 2 FADH2 y 4 ATP/GTP por sustrato. La CTE convierte esto en ≈ 30–32 ATP según la lanzadera usada. La regulación clave ocurre en PFK‑1, piruvato quinasa, PDH e isocitrato/α‑KG deshidrogenasas.","related_topics":["Lanzaderas de NADH (malato‑aspartato vs glicerol‑3‑fosfato)","Complejos de la cadena respiratoria y ATP sintasa","Regulación hormonal de la glucólisis y gluconeogénesis","Anaplerosis y cataplerosis en el ciclo de Krebs","Desacopladores e inhibidores de la fosforilación oxidativa"]}

示例详情

解决的问题

为学习者提供权威、简单易懂的学习指导,帮助其轻松解决疑难问题,并激发对知识的兴趣。

适用用户

在校学生

为正在学校学习的学生提供清晰易懂的学术指导,例如数学公式的分步骤解析或历史背景知识的简明总结。

职场学习者

帮助职场人士快速理解行业知识或实用技能,例如用简单语言解读技术原理或市场趋势。

自学爱好者

为希望自我提升的个人解决跨领域学习困难,例如提供文学、科学或编程等领域的基础知识支持。

特征总结

用简单语言解答复杂学习难题,快速理解知识要点。
支持多领域问题解答,像专家一样提供权威答案。
通过分层次讲解帮助用户逐步掌握知识内容。
自动组织重点内容,生成清晰易懂的学习指导。
为用户提供延伸学习资料,拓展知识深度和广度。
理解用户提问意图,量身定制最适合的解答方式。
支持使用多种语言解答,满足不同语言用户需求。
结合问题领域,精准归纳相关知识点,提升学习效率。
自动生成简短总结,帮用户快速抓住核心内容。
面向学习者需求,设计激发学习兴趣的内容输出。

如何使用购买的提示词模板

1. 直接在外部 Chat 应用中使用

将模板生成的提示词复制粘贴到您常用的 Chat 应用(如 ChatGPT、Claude 等),即可直接对话使用,无需额外开发。适合个人快速体验和轻量使用场景。

2. 发布为 API 接口调用

把提示词模板转化为 API,您的程序可任意修改模板参数,通过接口直接调用,轻松实现自动化与批量处理。适合开发者集成与业务系统嵌入。

3. 在 MCP Client 中配置使用

在 MCP client 中配置对应的 server 地址,让您的 AI 应用自动调用提示词模板。适合高级用户和团队协作,让提示词在不同 AI 工具间无缝衔接。

AI 提示词价格
¥25.00元
先用后买,用好了再付款,超安全!

您购买后可以获得什么

获得完整提示词模板
- 共 432 tokens
- 5 个可调节参数
{ 问题描述 } { 语言 } { 学科领域 } { 是否详细解释 } { 用户水平 }
获得社区贡献内容的使用权
- 精选社区优质案例,助您快速上手提示词
使用提示词兑换券,低至 ¥ 9.9
了解兑换券 →
限时半价

不要错过!

半价获取高级提示词-优惠即将到期

17
:
23
小时
:
59
分钟
:
59