生成关于正态分布特征的专业分析和清晰说明。
概览与结论 - 日新增用户分布近似正态(Shapiro-Wilk p=0.12,不拒绝正态性假设),中心在340,波动幅度由标准差28刻画。 - 形状上几乎对称(偏度≈0.05),尾部略微平缓(峰度≈-0.1,相对正态略“平顶”),极端值较正态略少见。 - 9/18的420属高值但仍在3σ范围内,更可能是活动驱动的外生波动,而非基础分布的常态。 正态分布的关键特征(结合当前数据) - 中心位置:均值≈340(在正态分布下,均值≈中位数≈众数)。 - 离散程度:标准差≈28(方差=784),决定日波动的典型幅度。 - 形状与尾部:近似钟形、对称;偏度≈0表示左右对称;峰度≈0表示与正态相当的尾部厚度。当前偏度≈0.05、峰度≈-0.1,说明轻微对称、尾部稍“薄”。 - 经验法则(68–95–99.7):在正态假设下 - 约68%的天数在[312, 368](±1σ); - 约95%在[284, 396](±2σ); - 约99.7%在[256, 424](±3σ)。 - 典型百分位(近似):第25/75百分位约为[321, 359](340 ± 0.674σ)。 异常点说明 - 9/18=420的Z分数≈(420−340)/28≈2.86,单侧尾概率约0.21%。在无活动条件下属于低概率事件,但仍在3σ区间内;考虑到活动影响,更应归类为可解释的事件型异常。 业务含义与建议 - 基线波动:大多数天的新增将集中在340±28的范围,超出396(+2σ)的高值应重点关注是否有营销、渠道或产品事件。 - 监测与告警: - 建议使用Z分数或均值±3σ作为稳定告警线;对活动窗口采用单独基线或加入事件变量,避免误报。 - 补充稳健指标(如中位数、IQR)用于周报对比,减少单日极值对趋势解读的影响。 - 统计推断:样本量n=1200使均值估计稳定,均值的95%置信区间约[338.4, 341.6];可基于正态假设开展预测与容量规划。
结论与要点 - 次日留存率在当前样本下可视为近似正态(正态性检验p=0.20),可安全使用基于正态分布的区间估计与显著性检验。 - 总体估计:均值42%,标准差3.5%,n=800。标准误约0.124个百分点,95%置信区间为[41.76%,42.24%],估计精度高。 - A/B 对比:A=41.8%,B=43.1%,差异1.3个百分点;若两组样本量相等且合并标准差为3.6%,差异的标准误约0.255个百分点,Z≈5.11,p<10^-6,差异在统计上显著;差异的95%置信区间约为[0.8,1.8]个百分点。标准化效应量d≈0.36(小到中等)。 - 样本量与检验力(基于σ=3.6%,差异δ=1.3个百分点):达到80%/90%检验力所需的每组样本量约为120/162;若当前为均分800(每组≈400),检验力>99%。请确认各组实际样本量以最终定论。 正态分布的关键特征(结合本指标解读) - 由两个参数完全刻画:均值μ与标准差σ。对称、钟形,均值=中位数=众数。对次日留存这种比例型指标,当样本量足够大且p不极端(此处p≈0.42),样本均值在中心极限定理下近似正态。 - 标准化与区间:任意观测可用Z=(X−μ)/σ转为标准正态。对样本均值,需使用标准误SE=σ/√n。当前SE≈0.124个百分点,意味着均值估计的随机波动很小。 - 经验法则(68-95-99.7):X~N(μ,σ^2)时,约68%/95%/99.7%的值落在μ±1σ/±2σ/±3σ内。以μ=42%,σ=3.5%计,μ±3σ≈[31.5%,52.5%],仍在0–100%边界内,正态近似合理。 - 线性与可加性:独立正态的线性组合仍为正态。对比A/B的均值差(在大样本下)也近似正态,便于用Z检验/置信区间评估差异。 - 推断友好性:正态假设允许使用z/t检验、置信区间、效应量与功效分析,便于运营评估中的快速决策。 A/B 评估要点与计算 - 假设与方法:检验H0: μA=μB。已知各组方差近似相等(合并σ≈3.6%),可用两独立样本z/t检验。差异的标准误SE(Δ)=σp√(1/nA+1/nB)。 - 在均分nA=nB=400的示例下:SE(Δ)≈0.036×√(1/400+1/400)≈0.255个百分点;Z=1.3/0.255≈5.11,p<10^-6;95% CI≈[0.8,1.8]个百分点;Cohen’s d=0.013/0.036≈0.36。 - 样本量指引(两侧α=0.05):为检测δ=1.3个百分点,σ=3.6%, - 80%检验力:每组约120 - 90%检验力:每组约162 - 注:如nA≠nB或方差不齐,应改用Welch检验;如存在多轮查看或多指标并行,对显著性需做校正或使用序贯方法。 注意事项 - 指标边界与分布:留存率∈[0,1]。在当前p与n下,用正态近似评估均值与均值差是恰当的;若p接近0或1或样本很小,应改用二项/比例检验或广义线性模型(如logit)。 - 稳健性:关注异常值与方差同质性;必要时进行Levene/Brown-Forsythe检验。 - 行动建议:确认A/B各组样本量并复算SE与p值;报告差异的置信区间与效应量;结合业务阈值评估1.3个百分点的实际价值,并规划后续发布或扩量验证。
Objective Describe the characteristics of a normal distribution and apply them to your marketing metrics: conversion rate (CR) and average order value (AOV), with validity checks and actionable implications. Key characteristics of a normal distribution - Shape and symmetry: Bell-shaped, perfectly symmetric around the mean; mean = median = mode. - Defined by two parameters: Mean (μ) sets the center; standard deviation (σ) sets the spread. Variance is σ². - Empirical rule (68–95–99.7): - About 68% of values lie within ±1σ of μ. - About 95% within ±2σ. - About 99.7% within ±3σ. - Z-scores: Standardizing (z = (x − μ) / σ) allows probability calculations and anomaly detection. - Additivity/approximation: Sums/averages of many independent effects tend toward normality (central limit theorem), making normal a practical model for aggregated marketing metrics. - Tails: The tails are thin; extreme values are rare but possible and quantifiable. Application to your metrics Normality checks - CR normality test p = 0.09; AOV p = 0.15. Both > 0.05 → fail to reject normality; “approximately normal” is reasonable for these data. - Note: The provided CR variance (0.0016) is inconsistent with σ = 0.4% if σ is in proportion units (0.004), which implies variance 0.000016. I’ll use σ for interval and probability estimates. Conversion rate (μ = 3.2%, σ = 0.4%, n = 3000) - One-sigma range (≈68% of observations): 2.8% to 3.6%. - Two-sigma range (≈95%): 2.4% to 4.0%. - Three-sigma range (≈99.7%): 2.0% to 4.4%. - Example probabilities: - P(CR > 3.9%): z = (3.9 − 3.2) / 0.4 = 1.75 → ≈ 4.0%. - P(CR < 2.5%): same z magnitude → ≈ 4.0%. - Precision of the mean (95% CI for μ): SE = 0.4% / √3000 ≈ 0.0073%; CI ≈ 3.2% ± 0.014% → [3.186%, 3.214%]. The mean estimate is very stable. Average order value (μ = 86, σ = 12, n = 3000) - One-sigma range (≈68%): 74 to 98. - Two-sigma range (≈95%): 62 to 110. - Three-sigma range (≈99.7%): 50 to 122. - Precision of the mean (95% CI for μ): SE = 12 / √3000 ≈ 0.219; CI ≈ 86 ± 0.429 → [85.571, 86.429]. Anomaly assessment: Thursday AOV = 125 - z = (125 − 86) / 12 = 3.25. - One-sided tail probability ≈ 0.0006; two-sided ≈ 0.0012. This exceeds the 3σ upper bound (~122), making it a statistically rare event under normality. - Business implications: Treat as an outlier likely driven by a discrete factor (promotion, campaign targeting, mix shift, data error). Investigate and document; consider robust handling (e.g., winsorize or analyze with/without the point). Practical notes for marketing analysis - CR is bounded between 0 and 1 and often arises from binomial processes; at μ = 3.2% with modest σ and large n, the normal approximation is acceptable, but beta/binomial modeling can be considered for finer inference. - Normal modeling supports: - Setting alert thresholds (e.g., 2σ bands for monitoring). - Quantifying the rarity of spikes/drops. - Building confidence intervals for KPIs to separate signal from noise. Conclusions - Both CR and AOV are approximately normal in your sample, enabling reliable use of z-scores, sigma bands, and confidence intervals. - Expected operational ranges: - CR: 2.4%–4.0% (95% band); mean tightly estimated at ~3.2%. - AOV: 62–110 (95% band). - The Thursday AOV = 125 is a statistically rare outlier (>3σ); investigate cause and treat carefully in reporting and optimization.
快速产出正态分布解读与业务含义,写入周报;标注偏离点并给出下一步验证建议。
评估核心指标的正常波动区间,设置预警阈值;为AB测试假设提供稳妥的分布说明。
解读转化率与客单价的分布特征,判断风险与常规波动;优化预算分配与目标设定。
描述产线尺寸或缺陷的分布形态,设定控制限与容差;识别偏离并安排抽检与调整。
评估收益或损失的分布适用性,界定异常区间,支持限额制定与风险缓冲策略。
生成清晰的正态特征说明与讲解要点,用于课程讲义、论文附录与同行沟通。
让产品、数据与业务团队基于自己的数据概况,快速生成一份面向业务的“正态分布特征说明”,包含关键特征、业务影响与行动建议,支持多语言展示,用于报告、评审、培训与对外演示,提升理解效率、减少误判、加速决策与转化。
将模板生成的提示词复制粘贴到您常用的 Chat 应用(如 ChatGPT、Claude 等),即可直接对话使用,无需额外开发。适合个人快速体验和轻量使用场景。
把提示词模板转化为 API,您的程序可任意修改模板参数,通过接口直接调用,轻松实现自动化与批量处理。适合开发者集成与业务系统嵌入。
在 MCP client 中配置对应的 server 地址,让您的 AI 应用自动调用提示词模板。适合高级用户和团队协作,让提示词在不同 AI 工具间无缝衔接。
免费获取高级提示词-优惠即将到期