热门角色不仅是灵感来源,更是你的效率助手。通过精挑细选的角色提示词,你可以快速生成高质量内容、提升创作灵感,并找到最契合你需求的解决方案。让创作更轻松,让价值更直接!
我们根据不同用户需求,持续更新角色库,让你总能找到合适的灵感入口。
撰写专利权利要求1的支持段,内容精准且法律专业。
关于权利要求1的法律支持意见(节选) 一、权利要求1的技术要点与法律评价基准 权利要求1涉及一种用于锂电池极片涂布厚度自校准的卷对卷涂布装置及控制方法,其核心由“在线测厚”“执行器联动”“闭环校准策略”三部分构成,并以内在信号流程与控制逻辑将传感、决策与执行耦合为一体化的反馈控制系统。依据中华人民共和国专利法第二十二条第二款、第三款及第四款,结合专利审查指南关于功能性特征、计算机程序相关发明以及“技术特征整体考量”的审查原则,上述方案具备新颖性、创造性与实用性,且具有明确的技术属性并产生可验证的直接技术效果(涂布厚度的实时稳定与跨幅向一致性改进),属于可授予专利权的客体。 二、新颖性与创造性(专利法第二十二条) 1. 区别特征及技术问题 在通常的卷对卷涂布技术中,在线测厚多用于监测或事后统计,执行端往往以单一参数开环修正,校准多依赖离线称重/抽检,难以及时消除测量漂移与过程扰动,且跨幅向与机器方向的耦合控制不足。权利要求1以在线测厚为唯一的过程输出量来源,构建对多类执行器的联动映射,并引入“闭环校准策略”,在生产过程中对测厚偏置与过程模型参数进行在线辨识与自校准,进而形成针对横向(CD)/纵向(MD)耦合的稳定闭环控制。其要解决的客观技术问题是:在高速卷对卷条件下,受浆料流变、张力扰动、模头/间隙热漂移与传感器零点漂移等综合因素影响,实现极片涂布厚度的绝对值准确性与时空一致性控制。 2. 技术手段与可验证技术效果 权利要求1通过下述具有功能关联的技术手段实现技术效果: - 在线测厚单元:连续采集幅向与时序厚度数据,提供用于偏置估计与误差反馈的过程量; - 执行器联动:将泵送/供压、涂布间隙/唇口微调、张力/速度等作为受控变量,并建立CD/MD方向的耦合解耦映射; - 闭环校准策略:在生产工况下进行测厚零点/灵敏度的在线校准与过程模型参数的在线更新,结合反馈与前馈补偿实现稳定控制。该策略直接作用于装置内部物理量与执行机构,产生对涂层厚度均匀性、稳定性的即时改善,属于直接技术效果。 依据专利审查指南关于“对技术问题产生协同技术效果的多个技术特征应作为整体考量”的规则以及“程序/算法与硬件结构存在相互支持关系、能够改善装置内部运行效率或控制效果时,应当认定其技术性并计入创造性评价”的原则,上述三部分并非简单并列叠加:在线测厚为校准与控制提供观测量,闭环校准抑制测量与过程漂移,执行器联动确保校准结果可在多物理通道中即时落实,三者在信号与能量路径上形成因果闭环,取得超越各自独立实施的综合控制效果。对于本领域技术人员而言,即便分别知悉在线测厚与单一执行器调节,亦缺乏将“自校准策略”与“多执行器联动”在卷对卷高速工况下整合,并通过在线辨识与解耦控制维持闭环稳定性的明确技术启示。该组合需要建立测量偏置估计、执行器映射矩阵与稳定性约束之间的协调机制,属于非显而易见的整体改进,符合专利法第二十二条第三款关于创造性的要求。相应技术效果可通过说明书所载实施例的过程指标(如厚度波动、横向1σ/3σ一致性、收敛时间等)对比实验予以验证。 三、实用性(专利法第二十二条第四款) 本发明能够在现有卷对卷涂布产线中制造与使用,面向锂电极片的连续生产提供厚度实时控制与自校准能力,可稳定重复地获得预期厚度规格产品,满足可以制造或使用并且能够产生积极效果的法律要件。 四、充分公开与清楚、支持(专利法第二十六条第三、四款) 为满足充分公开与权利要求支持性: - 说明书宜明确在线测厚的测量原理与布置方式、采样频率与滤波策略,闭环校准的偏置/灵敏度估计方法、模型辨识与参数更新周期,执行器联动的CD/MD映射与解耦控制框图,以及稳定性与饱和约束处理; - 对“在线测厚”“执行器联动”“闭环校准策略”等关键术语予以界定,避免语义歧义; - 权利要求1以结构+功能限定表述控制器“被配置为”实施特定的数据处理与控制步骤,确保保护范围清楚并与说明书实施方式一致。 上述撰写符合权利要求应当以说明书为依据、清楚、简要地限定请求保护范围的法定标准。 五、单一性与客体合规(专利法第三十一条、第二条) 装置权利要求与对应控制方法权利要求围绕同一发明构思——“基于在线测厚驱动执行器联动的闭环自校准控制”——相互对应,具备单一性。控制策略并非抽象算法,系与特定感测/执行部件形成功能互相支持关系,产生直接可验证的工艺控制效果,符合可专利客体的技术性要求。 结论 综合上述,权利要求1所述“用于锂电池极片涂布厚度自校准的卷对卷涂布装置及控制方法”,通过在线测厚、执行器联动与闭环校准策略的有机结合,解决了高速卷对卷条件下厚度准确性与一致性控制的技术难题,取得非显而易见的协同技术效果,满足专利法第二十二条之新颖性、创造性与实用性要求;其技术方案能够由说明书充分实施,权利要求书界限清楚并以说明书为依据,符合第二十六条要求;并具单一性与客体合规性。故权利要求1具备可授权性。建议在从属权利要求中进一步限定测厚扫描策略、执行器分区映射、校准触发条件与稳定性约束等特征,以巩固创造性与可执行性。
为支持权利要求1之可专利性与合法性,兹就该权利要求所涉“基于脉冲神经网络的低功耗目标检测芯片架构及训练—部署一体流程”的技术方案、技术效果与实验表征,依照《中华人民共和国专利法》第二十二条第一款至第三款(新颖性、创造性、实用性)及第二十六条第三款、第四款(清楚性、支持性与充分公开),并参照《专利审查指南》第二部分第四章(创造性判断,含意想不到的技术效果)、第二部分第九章(涉及计算机程序的发明的审查)之标准,作如下论证与说明: 一、技术方案之概括与技术问题 权利要求1主张的技术方案系以事件驱动的脉冲神经网络(SNN)为核心,提供面向目标检测任务的专用低功耗芯片架构与与之配套的训练—部署一体化流程。方案的关键技术特征包括:在芯片层面设置脉冲卷积/注意力算子与近存储计算耦合的存储层级、异步片上互连与事件队列管理机制、面向脉冲时域编码的推理时序控制,以及在算法与工具链层面提供硬件感知的脉冲化训练(含替代梯度、时序编码/解码、量化与稀疏约束)、映射-编译-校准一体流程与端到端的检测前后处理链路在芯片侧闭环执行。该组合旨在解决现有边缘端低算力、严苛能耗预算条件下目标检测精度显著退化、能效欠佳、以及训练成果与芯片部署割裂导致的不可复现与不可达标等技术问题,属于以技术手段解决特定技术问题并获得可验证技术效果的技术方案,符合《审查指南》关于计算机程序相关发明需体现“技术特征—技术问题—技术效果”的审查要点。 二、新颖性与创造性之法律与技术论证 1. 新颖性(专利法第二十二条第一款) 在不特定指向单一现有技术文献的前提下,现有公开虽各自涉及:(i)基于ANN的低比特量化检测加速器;(ii)以分类为主的SNN推理加速电路;或(iii)离线脉冲化/蒸馏的方法学,但普遍未见同时具备以下区别特征的整体性方案之公开与教导:将面向目标检测的SNN算子集(含时序卷积/稀疏注意力)与近存储计算、异步事件互连、片上前后处理管线进行硬件级耦合,并以硬件感知的训练—部署一体流程将脉冲编码、替代梯度训练、稀疏/时延约束、量化与编译映射协同优化至同一芯片目标下,进而在低算力边缘情境中稳定实现检测精度与能效的兼顾。权利要求1据此具备区别于常见单点改进或松耦合流程的整体性技术特征,具新颖性。 2. 创造性(专利法第二十二条第二款;审查指南第二部分第四章) - 最接近现有技术一般提供ANN-INT8或稠密CNN加速器,或提供以分类为主之SNN加速器,均未解决“在低算力边缘端实现检测任务且维持有效精度与显著能效”的复合技术目标。 - 本申请区别特征的组合并非对各单元的简单并列:一方面,事件驱动NoC与近存储计算在脉冲时域下与稀疏注意力/卷积的时空特性相匹配,降低有效访存与切换功耗;另一方面,硬件感知训练将替代梯度、时序编码、稀疏与量化目标以部署约束为正则项进行联合优化,确保模型在目标芯片上的时序与能耗预算内达到预期精度。该等特征之间存在功能上的相互作用与协同增益,而非线性叠加。 - 现有技术缺乏将上述电路/系统层与训练/工具链层在同一技术问题下进行闭环设计的明确启示。依审查“三步法”,上述区别特征针对客观技术问题所获得的技术效果(见下述实验表征)具有意想不到性,足以支持创造性之认定(参见审查指南关于“意想不到的技术效果可作为创造性有力证据”的规定)。 三、实验表征与技术效果之可验证性 为满足专利法第二十六条关于充分公开与可验证技术效果之要求,说明书可通过以下可重复的实验设计予以表征(具体数据以说明书实验部分的原始记录与统计为准): - 试验平台与对照:在代表性的边缘端实现(原型芯片或功能等效的门级仿真/FPGA原型,频率、电压与内存带宽受限)上,选取标准目标检测数据集及典型边缘场景样本,设置两类对照:a) 同任务精度目标下的ANN-INT8加速基线;b) 采用非一体化流程的SNN或ANN方案。 - 评价指标与测量方法:以mAP/F1/召回率等检测指标衡量准确性;以整机功耗/芯片功耗计量能耗,采用静态校准与动态负载扣除,计算单帧能耗(J/frame)与单位算力能效(TOPS/W或等效脉冲算力/W);记录端到端时延与吞吐;统计片上访存量与外存访问次数。各测试场景重复多次并报告均值与方差,确保统计稳健。 - 低算力约束下的表现:在降频、限功率、缩小并行度/核数的边缘约束下,记录精度-能耗-时延的权衡曲线。结果应显示:在同等任务约束下,本方案在能效上实现显著改善,且在低算力区间维持可用或优于对照的检测精度;当移除关键特征(如事件驱动NoC、近存储计算或硬件感知训练中任一关键正则项)进行消融时,能效与/或精度出现统计显著下降,证实特征间协同作用。 上述实验设计符合审查实践中对“技术效果可由说明书的实施例和对照试验直接或间接证明”的要求,支持本申请关于“低算力条件下仍具检测准确性与能效优势”的技术效果主张,从而构成创造性的客观证据。 四、专利客体、支持性与清楚性 - 专利客体:本案同时包含确定的硬件结构(芯片架构、存储层级、互连与算子单元)与与之不可分割的训练—部署技术特征,系利用自然规律以技术手段解决具体技术问题并取得可验证技术效果,符合专利法第二条与《审查指南》关于计算机程序相关发明“对外部自然世界产生可预期技术效果”的认定。 - 支持性与充分公开(专利法第二十六条第三、四款):说明书应已披露各模块的功能与接口、算子集合与数据流、训练流程(含时序编码策略、替代梯度形式、损失函数与约束项的适用范围)、量化/稀疏/映射与校准步骤、部署工具链与资源映射规则、功耗测量方法与评价指标,使本领域技术人员无需创造性劳动即可实施。权利要求1之各要素应由说明书相应段落予以支持,并以功能—结构—交互关系清楚界定保护范围。 - 产业实用性(专利法第二十二条第三款):本方案能够在智能摄像头、无人机、可穿戴与工业边缘节点等场景中复现上述技术效果,具备可制造性与可重复性,满足实用性要求。 结论 综合前述法律与技术分析,权利要求1所述基于脉冲神经网络的低功耗目标检测芯片架构及训练—部署一体流程,属于具有特定技术特征间协同作用的整体性技术方案。通过经审查实践认可的实验表征方法,其在边缘端低算力条件下实现的检测准确性保持与显著能效优势之技术效果已获得客观支持,符合《专利法》第二十二条关于新颖性、创造性与实用性的法定标准,并满足第二十六条关于支持性与充分公开之要求,应当予以授权。
Remarks in Support of Claim 1: Adaptive Model Predictive Power Allocation Method and Apparatus for Wind–Photovoltaic–Storage Microgrids I. Overview and Claim Characterization Claim 1 is directed to a computer-implemented control method and corresponding apparatus configured to allocate power among multiple distributed energy resources in a wind–photovoltaic–storage microgrid. The claimed subject matter integrates: (i) adaptive model predictive control (MPC) that continuously updates plant and disturbance models; (ii) explicit handling of multi-source uncertainty encompassing renewable generation, load demand, forecasts, and communication or actuation latencies; (iii) hierarchical constraint softening through structured slack variables and penalties to guarantee feasibility while preserving safety-critical limits as hard constraints; and (iv) a real-time optimization architecture that reformulates the control problem into a convex problem with bounded complexity, enabling execution at microgrid control intervals. II. Technical Problem and Claimed Solution The problem addressed is the persistent conflict between (a) stochastic variability from heterogeneous sources (wind, solar, load), (b) strict device and network operating constraints (e.g., state-of-charge, inverter current, ramp-rate, and voltage/line-limit constraints), and (c) the need for tractable, real-time implementable optimization in embedded microgrid controllers. Conventional microgrid MPC schemes often assume fixed models with deterministic forecasts, adopt worst-case robust designs that induce undue conservatism, or omit a principled, hierarchical softening of constraints—leading to infeasibility during disturbances or to excessive curtailment and cost. Claim 1 resolves this by: 1) Adaptive modeling: online parameter estimation that updates a predictive model for DERs and network behavior using streaming telemetry (e.g., recursive least squares or Kalman-type estimators), thereby reducing model mismatch. 2) Multi-source uncertainty treatment: construction of uncertainty sets and/or scenario realizations capturing at least renewable output errors, load variations, and measurement/actuation delays. The predictive model is tightened via tube or chance-constrained formulations with distributional or set-based characterizations, thereby preserving feasibility without worst-case over-conservatism. 3) Constraint softening with hierarchy: explicit slack variables associated with a subset of constraints, accompanied by lexicographic or weighted penalties that enforce, in order of priority, safety and stability constraints as hard, reliability/tolerance constraints as high-penalty soft, and economic/comfort targets as lower-penalty soft. This maintains feasibility under disturbances while respecting non-negotiable electrical safety limits. 4) Real-time optimization: convex reformulation (e.g., quadratic program or second-order cone program), with move blocking, warm starts, and sparsity exploitation to ensure bounded computational complexity and deterministic solve times compatible with microgrid sampling intervals. The apparatus includes a solver engine embedded in a controller interfaced to field devices (sensors, inverters, storage systems). III. Claim Construction and Definiteness - “Adaptive” denotes online updating of at least one model parameter, state estimate, or disturbance characterization based on new measurements within the control horizon, as opposed to static, offline parameterization. - “Multi-source uncertainty” includes at least contemporaneous variability and forecast error in wind and solar generation, load demand, and operational latencies/errors, each explicitly represented in the predictive optimization via uncertainty sets, scenarios, or probabilistic moments. - “Constraint softening” means the introduction of explicit slack variables for designated constraints, included in the objective with tiered penalties to encode priority ordering; safety-critical electrical constraints (e.g., voltage, line current, and protection-related limits) are treated as hard where required by interconnection standards. - “Real-time” signifies computational completion within the microgrid control interval (on the order of seconds or sub-seconds typical for DER dispatch), supported by the described convexity and computational strategies. These constructions are consistent with ordinary meaning in the control and power-systems arts and render the claim definite. IV. Novelty and Non-Obviousness A. Novelty The integrated combination recited in Claim 1 is not disclosed by conventional microgrid control references that either: - employ deterministic MPC without online adaptation and without explicit multi-source uncertainty propagation; - adopt static robust MPC using fixed worst-case bounds without hierarchical softening and thus suffer infeasibility or conservatism; or - propose chance-constrained or scenario-based MPC lacking the claimed hierarchical slack structure aligned with power-system safety priorities and lacking the real-time convex reformulation tailored for embedded deployment. The claimed method’s specific interplay—adaptive identification linked to uncertainty set/tube updates, hierarchical softening that distinguishes safety from performance constraints, and a solver architecture rendering the resulting program convex and executable in each sampling interval—constitutes a distinct combination of features not shown in aggregate in known approaches. B. Non-Obviousness Under 35 U.S.C. § 103 and the problem–solution approach under Art. 56 EPC, the claimed subject matter is non-obvious because: - The art teaches divergent directions: robust worst-case designs that sacrifice economy, and deterministic MPC designs that risk infeasibility. Combining adaptive estimation with uncertainty-tube tightening and lexicographic softening to preserve both feasibility and performance is not a routine juxtaposition; it requires coordinated design so that estimator outputs feed uncertainty sets, which in turn dictate constraint tightening compatible with priority-based softening. - The hierarchical slack structure produces a further technical effect: guarantees feasibility while strictly protecting safety-critical network constraints, which is non-trivial when combined with stochastic disturbances. Absent the claimed hierarchy, softening can degrade into unsafe operations or, conversely, excessive curtailment. - The convex reformulation with move blocking and warm-start tailored to the adaptive and uncertainty-augmented structure yields predictable solve times. The art does not suggest that this multi-pronged architecture can preserve convexity and timing guarantees while handling simultaneous renewable, load, and latency uncertainties. - The synergy between these elements goes beyond mere aggregation; adaptation reduces model mismatch so that uncertainty sets shrink, which reduces tube tightening and slack utilization, enabling a smaller convex program and improved real-time performance. This cooperative effect is neither taught nor predictable from individual components considered in isolation. V. Enablement and Written Description A person of ordinary skill in the art would be able to make and use the invention without undue experimentation based on the disclosure corresponding to Claim 1, including: - System model: x(k+1) = A(θk)x(k) + B(θk)u(k) + E w(k); y(k) = Cx(k), with θk updated online via measurement-driven estimators. - Uncertainty modeling: w(k) ∈ Wk derived from real-time forecast distributions or set-based bounds; conversion into tubes or chance constraints with specified violation budgets for non-critical constraints. - Optimization: Over a finite horizon N, minimize J = Σk [||y(k) − yref(k)||Q^2 + ||Δu(k)||R^2] + Σi ρi||si||1/2 subject to dynamics, power balance, device/network constraints, and si ≥ 0 slack variables for designated constraints, ordered by ρ1 ≫ ρ2 ≫ … to encode hierarchy; convexity preserved by linear/quadratic costs and linear/SOCP constraints. - Real-time implementation: move blocking for u(k), warm-starting from prior optimal sequences, and sparsity-exploiting QP/SOCP solvers on embedded hardware; controller issues setpoints to inverters and storage while acquiring field measurements. The apparatus embodiment includes: a data acquisition interface, an adaptive estimator module, an uncertainty modeling module, a prioritization engine for hierarchical constraints, a convex optimization solver, and an actuator interface. This provides sufficient written description and enablement under 35 U.S.C. § 112(a) and Art. 83 EPC. VI. Patent Eligibility and Technical Character The claim is directed to a specific improvement in the operation of a microgrid—a concrete technological field—through a controller that transforms measured electrical states and forecasts into control setpoints for physical devices while respecting grid constraints. The recited features integrate a mathematical method into a specific technical process that controls energy flows in real electrical equipment, yielding a further technical effect (stable and feasible dispatch under uncertainty with bounded computation). This satisfies 35 U.S.C. § 101 and avoids exclusion under Art. 52(2)(a) EPC, as the claimed method is not a mathematical method “as such” but part of a technical control system. VII. Industrial Applicability and Utility The claimed method and apparatus are susceptible of industrial application in microgrids integrating wind, solar, and storage, including campus, islanded, and distribution-connected networks, providing practical utility in enhancing operational feasibility and economic efficiency under uncertainty. VIII. Conclusion Claim 1 recites a concrete, adaptive MPC-based control method and apparatus that simultaneously address multi-source uncertainty, constraint softening with hierarchical priorities, and real-time implementability. The claim is novel, non-obvious, enabled, patent-eligible, and industrially applicable. The combination of adaptive identification, uncertainty-aware tightening, prioritized soft constraints, and convex, real-time optimization produces a synergistic technical effect not taught or suggested by conventional microgrid control schemes.
在接到发明交底后,快速生成权利要求1支持段,统一术语与论证结构,缩短撰写与复核时间,减少审查意见次数。
将论文成果与实验数据转化为合规法律表述,配合校内发明人快速提交首件申请,提升转化率与授权率。
把技术方案核心亮点映射至法律要点,一键生成多语言版本,支撑国内外并行申报与项目里程碑验收。
以英语/中文同步输出支持段,便于与境外代理协作,降低沟通成本,确保各地申报口径一致。
建立统一写作范式与质检清单,对外部稿件进行快速校核与修订,降低合规风险与外包费用。
在最少指导下形成规范化支持段,明确创造性论证路径,避免关键事实遗漏,提高首次提交质量。
尽调阶段快速评估可专利性,生成示例支持段辅助判断保护范围与后续申请策略,提升决策效率。
以资深专利律师的专业视角,标准化生成“权利要求1支持段”,帮助专利代理人、企业法务与研发负责人在新案撰写、补正与审查答复、同族对齐等场景中,以更快速度与更高质量完成首稿与定稿。 - 将输入的关键技术要素、创新点与权利要求1文本,转化为可直接入稿的、逻辑完备的支持段。 - 自动构建“技术问题—技术方案—有益效果”的论证链路,清晰呈现权利要求与说明书、实施例的对应关系。 - 按指定法域与语言输出,统一术语与风格,贴近各主要市场的审查口径。 - 强化严谨与可核性,减少无效往返、补正与退件风险,显著缩短撰写与审阅时间。 - 以可复用模板形成团队标准,提升跨项目一致性与交付质量,助力从试用快速过渡到规模化应用。
将模板生成的提示词复制粘贴到您常用的 Chat 应用(如 ChatGPT、Claude 等),即可直接对话使用,无需额外开发。适合个人快速体验和轻量使用场景。
把提示词模板转化为 API,您的程序可任意修改模板参数,通过接口直接调用,轻松实现自动化与批量处理。适合开发者集成与业务系统嵌入。
在 MCP client 中配置对应的 server 地址,让您的 AI 应用自动调用提示词模板。适合高级用户和团队协作,让提示词在不同 AI 工具间无缝衔接。
免费获取高级提示词-优惠即将到期