热门角色不仅是灵感来源,更是你的效率助手。通过精挑细选的角色提示词,你可以快速生成高质量内容、提升创作灵感,并找到最契合你需求的解决方案。让创作更轻松,让价值更直接!
我们根据不同用户需求,持续更新角色库,让你总能找到合适的灵感入口。
帮助撰写研究方法学部分,提供精准且专业的研究支持。
研究方法 研究设计与论题陈述 本研究采用定量取向的分层整群随机对照试验(cluster randomized controlled trial, CRCT),以班级为随机化单位,在预先定义的分层内按1:1比例将班级分配至干预组或等时长的主动对照组。鉴于教育情境中对干预实施者完全盲法的可行性限制,本研究实施严格的双盲评分与分析,并使参与者不知晓组别标签与研究假设,以最大限度降低观察者偏倚与测量偏倚(Schulz & Grimes, 2002; Torgerson & Torgerson, 2008; Eldridge et al., 2012)。主要估计量为意向治疗效应(intention-to-treat, ITT),主要结局为标准化学业测验的后测得分。 研究对象与分层整群抽样 - 抽样框与分层:以目标区域义务教育学校名录为抽样框,按学校层面两项背景特征分层:(a)城乡属性;(b)学校社会经济地位(SES)分位。分层的目的是提高样本代表性并提升估计精度(Bloom, Bos, & Lee, 1999; Donner & Klar, 2000)。 - 整群单位与两阶段抽样:第一阶段,在每一分层内按学校为抽样单位等概率抽取目标学校;第二阶段,在入选学校内以班级为整群单位随机抽取目标年级的自然班。整群抽样对应CRCT的组织现实,且与班级层面随机化一致(Murray, 1998; Eldridge et al., 2012)。 - 纳入与排除标准:纳入当学期采用常规课程安排且具备实施干预的技术与管理条件的年级班级;排除正在参与其他干预试验或存在重大课程改革的班级。 - 权重与外推:用于总体描述与外推的估计将应用基于选择概率的抽样权重与分层信息;因随机化保障内部效度,主要因果估计不加权并在模型中控制分层固定效应(Bloom et al., 1999; Donner & Klar, 2000)。 干预与对照条件 - 干预:在常规课程之上引入一项明确定义的教学干预(例如,基于学习分析的形成性反馈系统),由受训教师在规定周次与课时内实施,提供操作手册与教案,确保可复制性。 - 主动对照:提供等时长、等注意力负荷的教学活动(例如,传统练习与同伴讨论),不包含干预的核心机理成分,避免“无处理”对照导致的期望效应与霍桑效应(Torgerson & Torgerson, 2008)。 - 实施忠诚度与并行处理:通过观察表、日志与系统使用记录监测实施忠诚度;对并行教育资源(作业负荷、课外辅导)进行记录以作协变量控制。 随机化与分配隐藏 - 随机化单位:班级(第二层级)。在分层与学校阻断内进行区组随机,采用变长区组以降低可预测性。 - 分配隐藏:由独立数据管理员使用计算机程序生成分配序列并实施集中分配,学校与教师在分配完成后方获知班级所分配之教学方案,从而防止选择性分配(Schulz & Grimes, 2002; Eldridge et al., 2012)。 盲法(双盲评分与分析) - 参与者盲:学生与家长不被告知组别标签与研究假设,仅获知“比较两种同等合理的教学方案”。干预与对照教学在外观与时长上尽量等同,减少识别概率(Torgerson & Torgerson, 2008)。 - 施测与评分盲:后测由未参与教学实施的外部施测员组织;客观题机读;主观题由经标准化培训的评分员在匿名条件下双评并盲于组别。 - 数据分析盲:在冻结分析方案与代码前,分析人员仅接触脱敏数据,组别以掩码变量标记;完成预注册的主分析后方揭盲(Schulz & Grimes, 2002)。鉴于教师无法盲法,研究将通过统一培训、脚本化教学与忠诚度监测缓解实施者期望偏倚(Eldridge et al., 2012)。 测量与数据收集 - 主要结局:标准化学业测验后测总分(同年级常模),在基线施测同构预测以用于协变量调整与等值检验。测验的内部一致性与结构效度将报告;若跨亚群比较,进行测量不变性检验。 - 次要结局:学习动机量表、课堂参与度与出勤记录。 - 背景协变量:学生性别、年龄、基线成绩、家庭SES;班级与学校层面包括班额、师资资历与学校SES分位。 - 数据质量:双人核对录入;建立数据字典与审计追踪;对异常值与离群点进行事前定义与处理。 统计分析计划 - 主分析:两层线性混合模型(学生嵌套班级),以后测为因变量,处理组别为固定效应,控制预测与分层固定效应,并包含班级随机截距: Yij(post) = β0 + β1·Treatmentj + β2·Yij(pre) + β3·Xij + γs(stratum) + uj + eij 其中uj ~ N(0, τ2),eij ~ N(0, σ2)。主要报告β1的点估计、95%置信区间与p值,采用稳健(夹套)标准误进行稳健性检验(Murray, 1998; Donner & Klar, 2000)。 - 估计量与效应量:按意向治疗原则分析;将估计转化为学生层面的标准化效应量Hedges g,并进行小样本修正(Hedges, 2007)。 - 副分析与异质性:按预注册方案在分层(城乡、学校SES)内估计条件效应并检验交互;进行按实施忠诚度分层的敏感性分析(明确非随机性,结果仅解释为关联)。 - 缺失数据:在MAR假设下采用多重插补(多水平/分层兼容的MICE或贝叶斯MI),插补模型含预后相关变量与分层/班级信息;进行基于模式混合的敏感性分析检验MNAR稳健性(Enders, 2010)。 - 多重比较:对多个次要结局控制假阳性发现率(Benjamini–Hochberg),主要结局不做多重校正。 功效分析与样本量估计 - 参数设定(基于文献与先验):两侧α=0.05,检验效能1−β=0.80;目标最小可探测效应(MDE)d=0.20(教育情境的小效应常见且具实践意义);班级内相关系数ICC=0.05(教育成绩常见范围0.02–0.20;Hedges & Hedberg, 2007);班级平均规模 m̄=35,班级规模变异系数CV=0.30;预测协变量解释方差R2=0.50(学业前后相关较高,Bloom et al., 1999)。 - 设计效应(不等整群修正):DE = 1 + (m̄ − 1)·ICC·(1 + CV2) = 1 + 34·0.05·(1 + 0.09) = 2.853(Kerry & Bland, 2001; Donner & Klar, 2000)。 - 等效独立样本量要求:两独立样本t检验近似,n_eff_per_arm = 2·(Zα/2 + Zβ)2 / d2 = 2·(1.96 + 0.84)2 / 0.202 = 392。考虑协变量调整后的残差方差缩减:n_eff_per_arm_adj = 392·(1 − R2) = 196(Raudenbush & Liu 方法思想;Murray, 1998)。 - 实际所需每组学生数:N_per_arm = n_eff_per_arm_adj · DE ≈ 196 · 2.853 ≈ 558。 - 整群数量近似:以m̄=35计,k_per_arm = 558 / 35 ≈ 16 个班级/组。 - 脱落调整:预期学生层面脱落率15%,班级层面脱落率10%。对班级数:k_target = 16 / (1 − 0.10) ≈ 17.8,向上取整为18班/组;为抵御学生脱落,计划每组至少20个班级,预期基线学生≈700人/组(20×35),按15%脱落计,期末≈595人/组,超过所需的558人/组,从而维持≥80%功效。该计算与CRCT功效理论及经验参数一致(Murray, 1998; Donner & Klar, 2000; Hedges & Hedberg, 2007; Spybrook et al., 2011)。 - 事前注册与模拟:在试验注册平台预注册效应量、模型与数据处理方案;使用基于ICC与真实班级规模分布的蒙特卡洛模拟对功效进行验证并存档。 伦理审查与知情同意 - 伦理审批:研究方案、工具与同意材料提交机构审查委员会(IRB)或等同机构审批,遵循《贝尔蒙报告》所确立的尊重、受益与公正原则,以及教育研究领域伦理准则(The Belmont Report, 1979; AERA, 2011)。 - 知情同意与同意书流程:在学校与教师同意的前提下,向监护人获取书面知情同意,并向未成年人获取同意(assent);材料以通俗语言说明目的、程序、潜在风险与受益、保密与退出权利,不因拒绝参与而受不公正待遇。 - 风险最小化与公平性:采用主动对照避免教育机会剥夺;若中期监测发现一组明显不利,将启动预设的伦理停试或转介机制(equipoise原则;Shadish, Cook, & Campbell, 2002)。 - 隐私与数据安全:采集的可识别信息最小化并分级存储;采用去标识化数据分析;静态加密与传输加密;仅授权人员可访问;遵守适用的数据保护法规。 - 盲法与告知:为维持盲法,信息披露不含组别标签与研究假设;研究结束后向参与者与学校进行去识别化结果反馈与科学传播。 质量控制与监测 - 研究者与教师培训、标准操作规程(SOP)、中期数据质量审查、实施忠诚度阈值与纠偏措施。 - 不良事件报告与独立顾问例行审查,确保参与者福祉与数据完整性。 参考文献 - American Educational Research Association. (2011). Code of Ethics. Educational Researcher, 40(3), 145–156. - Bloom, H. S., Bos, J. M., & Lee, S.-W. (1999). Using cluster random assignment to measure program impacts: Statistical implications for the evaluation of education programs. Evaluation Review, 23(4), 445–469. - Donner, A., & Klar, N. (2000). Design and Analysis of Cluster Randomization Trials in Health Research. London: Arnold. - Eldridge, S. M., Kerry, S., & Torgerson, D. J. (2012). Bias in identifying and recruiting participants in cluster randomised trials: What can be done? BMJ, 345, e5661. [包含CONSORT延伸对于CRCT的报告与实施要点] - Enders, C. K. (2010). Applied Missing Data Analysis. New York: Guilford Press. - Hedges, L. V. (2007). Correcting a bias in the standard estimator of effect size. Psychological Methods, 12(1), 31–41. - Hedges, L. V., & Hedberg, E. C. (2007). Intraclass correlation values for planning group-randomized trials in education. Educational Evaluation and Policy Analysis, 29(1), 60–87. - Kerry, S. M., & Bland, J. M. (2001). Unequal cluster sizes in cluster randomized trials. Statistics in Medicine, 20(3), 377–390. - Murray, D. M. (1998). Design and Analysis of Group-Randomized Trials. New York: Oxford University Press. - Schulz, K. F., & Grimes, D. A. (2002). Allocation concealment in randomised trials: Defending against deciphering. The Lancet, 359(9306), 614–618. - Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Boston, MA: Houghton Mifflin. - Spybrook, J., Bloom, H., Congdon, R., Hill, C., Martinez, A., & Raudenbush, S. (2011). Optimal Design Plus Empirical Evidence: Documentation for the “Optimal Design” Software. William T. Grant Foundation. - The Belmont Report. (1979). Ethical Principles and Guidelines for the Protection of Human Subjects of Research. U.S. Department of Health, Education, and Welfare. - Torgerson, D. J., & Torgerson, C. J. (2008). Designing Randomised Trials in Health, Education and the Social Sciences. Basingstoke: Palgrave Macmillan. 注:鉴于教育场域中完全意义上的“双盲”往往不可行,本研究按照国际规范优先确保评分与分析盲,并对参与者隐藏组别标签与研究假设;对无法盲法的实施者通过标准化与忠诚度监测减轻偏倚,上述做法与CRCT方法学共识一致(Eldridge et al., 2012; Torgerson & Torgerson, 2008)。
研究方法 研究设计 本研究采用混合方法的课堂行动研究取向,旨在在真实教学情境中迭代优化教学实践并检验其成效。整体设计为嵌入式混合方法:在每一轮“计划—行动—观察—反思”循环中同步收集定量与定性数据,并在循环内和循环间进行整合,用以解释学习成效与课堂过程之间的关联(Creswell & Plano Clark, 2018;Kemmis, McTaggart, & Nixon, 2014)。定量部分以前后测与标准化观察量表为主,定性部分以半结构访谈与研究者反思札记为主。研究目的兼顾改进与解释:一方面通过行动研究提升教学实践的适切性与有效性,另一方面通过多源证据建立干预成效与机制的合理解释(Greene, Caracelli, & Graham, 1989;Mertler, 2017)。 研究场域与参与者 研究在一所常态化教学班级的真实课堂开展。采用自然情境中的整群样本(intact class)并辅以目的性抽样用于访谈,以确保观点的多样性与信息丰富度(Cohen, Manion, & Morrison, 2018;Patton, 2015)。参与者包括任课教师、班级学生以及在部分课时参与的同伴观察者。为降低情境偏差,保留原有课程安排与评价制度,仅将干预策略嵌入既有教学流程。访谈对象根据学习表现、课堂参与度与性别等维度进行最大变异抽样;访谈样本规模遵循“信息力”原则,在达到信息饱和时停止招募(Malterud, Siersma, & Guassora, 2016)。 教学干预与行动周期 研究预计实施多轮行动研究循环。每轮包含: - 计划:基于上一轮证据制定可操作的教学改进方案,明确可观察的目标与成功标准。 - 行动:在连续课次中实施干预策略,记录实施剂量(课时数、时长)、遵循度(关键步骤完成度)与质量(师生互动品质)。 - 观察:使用课堂观察量表与过程性记录收集数据,并实施必要的同伴观课。 - 反思:汇总定量与定性证据,识别有效做法与瓶颈,修订下一轮方案(Kemmis et al., 2014;Mertler, 2017)。 测量工具与资料来源 1) 课堂观察量表 - 工具构建:参照既有课堂观察工具的构念结构(如CLASS、RTOP)界定维度与操作性定义,形成4点或5点行为锚定评分量表,涵盖课堂结构、学术严谨性、学习者参与、形成性评价与师生互动等核心维度(Pianta, La Paro, & Hamre, 2008;Sawada et al., 2002)。 - 内容效度:邀请3–5位学科与测量专家进行德尔菲式评审,依据相关性、可观察性与表述清晰度修订条目(AERA, APA, & NCME, 2014;Messick, 1995)。 - 评分者培训与信度:采用编码手册进行校准训练,使用示例视频与现场双人同录。抽取至少20%课时进行双评并计算组内相关系数ICC(2,k)评估一致性,目标值≥0.75;对关键事件的类别判断计算Cohen’s κ(Shrout & Fleiss, 1979)。内部一致性以Cronbach’s α评估(Cronbach, 1951)。 - 结构检验:在样本允许时进行探索性/验证性因素分析以检验量表维度的拟合性与区分度(Cohen et al., 2018)。 2) 半结构访谈 - 访谈提纲:围绕学习体验、策略可用性、参与动机、困难与支持、课堂互动质量与公平性等主题,设置开放性主问题与追问(Patton, 2015)。 - 实施与记录:课后48小时内开展个别或小组访谈,时长依受访者负担与信息饱和度确定;经允诺后录音并转写。 - 质性严谨性:通过成员检核回馈要点与初步主题;保留审计轨迹(编码本、备忘录与决策记录)以提升可审查性(Lincoln & Guba, 1985)。 3) 前后测(学习成效) - 工具:依据课程目标与认知层次(识记、理解、迁移/应用)编制或选用与课程一致的测验,兼顾客观题与开放性题。采用专家评审与小样本预测试检验内容效度与可理解性(AERA et al., 2014)。 - 计分与信度:客观题采用CTT指标计算KR‑20/α;主观题以评分量表双评计分,计算ICC/κ评估评分一致性。必要时采用锚题或Rasch模型对难度差异做校正(Bond & Fox, 2015)。 - 安排:前测于干预前一周内实施,后测于干预结束后同等条件下实施,确保测验条件与时间等价以控制测试效应(Shadish, Cook, & Campbell, 2002)。 4) 实施忠实度(Fidelity) - 维度:遵循度(核心步骤完成比例)、剂量(次数/时长)、质量(教学互动质量)与差异化适配(对不同学习者的调整)。 - 证据:教师自评清单、同伴观察记录与课堂录影的清单化编码(O’Donnell, 2008)。 数据收集程序 - 基线:收集前测成绩与首轮常态课堂观察数据,建立可比基线。 - 循环执行:每轮干预期内,安排至少2次系统性课堂观察与一次短访谈/焦点访谈;必要时补充形成性测验。 - 反思与修订:每轮结束后进行多源证据汇整会议,生成可操作的教学修订点并进入下一轮。 数据分析 1) 定量分析 - 描述统计:报告各指标均值、标准差与95%置信区间;对量表维度提供内部一致性系数。 - 成效检验:对同一群体前后测采用配对样本t检验;若不满足正态性,采用Wilcoxon符号秩检验。多轮循环可采用线性混合模型检验时间趋势与循环效应,必要时控制协变量(Cohen, 1988;Field方法学见Cohen et al., 2018)。 - 效应量:报告Cohen’s d(配对校正)与相应置信区间,便于累积科学解释;对非参数检验报告r或相应转换的效应量(Lakens, 2013)。 - 观察量表:对关键维度进行前后比较或分阶段趋势分析;双评数据计算ICC/κ并报告置信区间(Shrout & Fleiss, 1979)。 - 缺失数据:描述缺失模式;若>5%且非完全随机,采用多重插补并进行敏感性分析(Rubin, 1987)。 2) 定性分析 - 编码流程:采用反复比较的主题分析,历经熟悉资料、初始编码、主题生成、主题审订与命名等阶段;编码本包含定义、纳入/排除标准与示例(Braun & Clarke, 2006)。 - 可靠性:对不低于20%的材料进行双人独立编码并计算κ或百分一致;分歧通过讨论达成一致并更新编码本。 - 解释策略:注重由数据出发的模式识别,同时对照理论范式与行动研究目标进行解释性编码,追踪机制线索(Patton, 2015)。 3) 混合整合 - 循环内汇合:采用并行汇合策略,将同一循环的量化与质性结果进行对照,构建“联结式展示”(joint display),识别趋同、互补或不一致证据(Fetters, Curry, & Creswell, 2013)。 - 循环间解释:运用“线索追踪”(following a thread)法在跨循环追踪关键主题与量化指标变化,生成元推论以指导下一轮行动(Creswell & Plano Clark, 2018)。 - 解释优先级:当结果不一致时,以实施忠实度、工具信度与数据来源层级进行权衡,并以教学情境证据为最终解释锚点(Greene et al., 1989)。 质量保障与伦理 - 测量效度与信度:遵循“统一效度观”,从内容、结构、关系与后果等方面积累效度证据;报告内部一致性、评分者一致性与(可行时的)结构指标(Messick, 1995;AERA et al., 2014)。 - 可信度与可转移性:采用数据三角互证、成员检核、同伴审议与厚描写提高可信度与可转移性;通过研究日志与决策备忘录建立审计轨迹(Lincoln & Guba, 1985)。 - 伦理:获得机构审查与家长/学生知情同意,确保自愿参与与可随时退出;采取去标识化与安全存储;访谈与观察强调最小干预,不影响常态教学。 效度威胁与控制 - 内在效度:通过前后测、对照既往基线、重复循环与忠实度监测缓解成熟、历史与测试效应威胁(Shadish et al., 2002;O’Donnell, 2008)。 - 外在效度:在自然课堂中实施并进行情境厚描,界定推论边界;报告班级特征与实施条件以便情境化迁移(Cohen et al., 2018)。 参考文献 - AERA, APA, & NCME. (2014). Standards for Educational and Psychological Testing. AERA. - Bond, T. G., & Fox, C. M. (2015). Applying the Rasch Model: Fundamental Measurement in the Human Sciences (3rd ed.). Routledge. - Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. - Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Lawrence Erlbaum. - Cohen, L., Manion, L., & Morrison, K. (2018). Research Methods in Education (8th ed.). Routledge. - Creswell, J. W., & Plano Clark, V. L. (2018). Designing and Conducting Mixed Methods Research (3rd ed.). Sage. - Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334. - Fetters, M. D., Curry, L. A., & Creswell, J. W. (2013). Achieving integration in mixed methods designs—Principles and practices. Health Services Research, 48(6 Pt 2), 2134–2156. - Greene, J. C., Caracelli, V. J., & Graham, W. F. (1989). Toward a conceptual framework for mixed-method evaluation designs. Educational Evaluation and Policy Analysis, 11(3), 255–274. - Kemmis, S., McTaggart, R., & Nixon, R. (2014). The Action Research Planner: Doing Critical Participatory Action Research. Springer. - Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science. Frontiers in Psychology, 4, 863. - Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry. Sage. - Malterud, K., Siersma, V. D., & Guassora, A. D. (2016). Sample size in qualitative interview studies: Guided by information power. Qualitative Health Research, 26(13), 1753–1760. - Mertler, C. A. (2017). Action Research: Improving Schools and Empowering Educators (5th ed.). Sage. - O’Donnell, C. L. (2008). Defining, conceptualizing, and measuring fidelity of implementation. Review of Educational Research, 78(1), 33–84. - Patton, M. Q. (2015). Qualitative Research & Evaluation Methods (4th ed.). Sage. - Pianta, R. C., La Paro, K., & Hamre, B. K. (2008). Classroom Assessment Scoring System (CLASS) Manual, K–3. Paul H. Brookes. - Sawada, D., et al. (2002). Measuring reform practices in science and mathematics classrooms: The Reformed Teaching Observation Protocol. School Science and Mathematics, 102(6), 245–253. - Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Houghton Mifflin. - Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420–428.
Research Design and Rationale This study employs an explanatory sequential mixed-methods design, administering a structured survey first and then conducting focus group interviews to explain and elaborate on quantitative patterns (Creswell & Plano Clark, 2017; Tashakkori & Teddlie, 2010). Integration is planned at design (connecting qualitative sampling to survey results), methods (building the focus group guide from quantitative findings), and interpretation (joint displays and meta-inferences) to enhance validity through triangulation and complementarity (Fetters, Curry, & Creswell, 2013). Setting, Participants, and Sampling - Population and frame: Educators (and, where appropriate, students) from a defined set of schools or programs. The sampling frame is derived from institutional rosters or partner districts. - Survey sampling: Stratified random sampling by institution type and demographic strata to improve representativeness and precision (Fowler, 2014). Planned target N ≈ 400–600 respondents, which affords ≥.80 power to detect small-to-moderate effects (f2 ≈ .03–.05) in multivariable models, assuming α = .05 (Cohen, 1988). Where clustering by school/classroom is non-negligible, design effects will inform the target N and multilevel models will be used (Raudenbush & Bryk, 2002). - Focus groups: Purposeful maximum-variation sampling of survey respondents who consented to follow-up, selected to reflect key subgroups (e.g., role, experience, context) and contrasting quantitative profiles (e.g., high/low scores on focal constructs). Approximately 6–8 groups with 6–8 participants each are planned, with final numbers determined by thematic sufficiency and the diversity of perspectives necessary to explain survey results (Morgan, 1997; Krueger & Casey, 2015). Instruments and Measures - Survey: A composite instrument assessing targeted constructs (e.g., instructional practices, self-efficacy, implementation barriers) using established scales where possible; new items are developed following best practices in scale development and psychometric validation (DeVellis, 2017). Items use 5-point Likert-type formats, with balanced keying and clear anchors to reduce satisficing (Krosnick, 1991). - Instrument development: Expert review for content validity; cognitive interviewing with 8–12 participants to refine item wording, comprehension, and response processes (Willis, 2005). A pilot test (n ≈ 50–80) will evaluate reliability and factor structure. - Focus group protocol: A semi-structured guide linked to survey findings (e.g., areas of divergence, surprising regression results, or subgroup differences) and designed to elicit explanations, contextual factors, and implementation details (Krueger & Casey, 2015). Prompts are neutral, open-ended, and ordered from general to specific to minimize priming effects (Morgan, 1997). Data Collection Procedures - Survey administration: Online mode with mobile-optimized design; three to four tailored contacts (pre-notice, invitation, reminder sequences) to maximize response and reduce nonresponse bias (Dillman, Smyth, & Christian, 2014). Incentives are modest and ethically appropriate. Estimated completion time is ≤15 minutes to limit burden. - Focus groups: 60–90 minutes each, in person or via secure video-conference. A trained moderator and an assistant conduct sessions using a standardized protocol; discussions are audio-recorded and professionally transcribed. Ground rules emphasize confidentiality while clarifying its limits in group settings (Krueger & Casey, 2015). Quantitative Data Analysis - Preparation: Data cleaning, screening for outliers, evaluation of missingness mechanisms. Missing data will be addressed via multiple imputation under MAR assumptions, with sensitivity analyses (Rubin, 1987; Schafer & Graham, 2002). - Measurement: Internal consistency reliability (Cronbach’s alpha and McDonald’s omega where appropriate); confirmatory factor analysis (CFA) to assess construct validity and (if applicable) measurement invariance across key subgroups prior to between-group comparisons (DeVellis, 2017). - Modeling: Descriptive statistics with 95% confidence intervals; multivariable regression or multilevel models if clustering is present (Raudenbush & Bryk, 2002). Model diagnostics will assess linearity, multicollinearity, and residual assumptions. Multiple comparisons will be controlled using false discovery rate procedures when applicable (Benjamini & Hochberg, 1995). Effect sizes (e.g., standardized betas) will accompany p-values (Cohen, 1988). - Bias checks: Nonresponse bias will be assessed through frame–respondent comparisons when auxiliary data are available and via late-responder analyses (Groves, 2006). Common method bias will be mitigated procedurally (assuring anonymity, psychologically separating measures, varied scale formats) and evaluated statistically (e.g., marker variable or latent method factor models) (Podsakoff et al., 2003). Qualitative Data Analysis - Approach: Reflexive thematic analysis conducted iteratively and systematically to identify explanatory mechanisms and contextual contingencies that account for quantitative patterns (Braun & Clarke, 2006). - Coding: A codebook will be generated deductively from the research questions and key quantitative results and inductively from the data. Two trained coders will independently code an initial subset to refine the codebook; intercoder agreement will be examined (e.g., Cohen’s kappa) to inform training and code refinement, while final analysis emphasizes analytic rigor and transparency rather than kappa thresholds alone (Cohen, 1960; Braun & Clarke, 2006). - Trustworthiness: Strategies include an audit trail, reflexive memos, peer debriefing, and targeted member checking of interpretive summaries where feasible (Lincoln & Guba, 1985). Reporting will follow relevant standards (e.g., COREQ) adapted to focus groups (Tong, Sainsbury, & Craig, 2007). Mixed-Methods Integration - Connecting: Quantitative results will inform qualitative sampling by selecting participants representing key subgroups or outlier patterns. - Building: Focus group questions will probe unexpected or theory-relevant quantitative findings. - Merging: Joint displays will align quantitative estimates with qualitative themes to generate meta-inferences, prioritizing convergence, complementarity, or explanation of divergence (Fetters et al., 2013; Creswell & Plano Clark, 2017). Quality Assurance and Data Management - Standardization: Detailed field manuals for survey administration and focus group facilitation; training and calibration of data collectors and moderators; pilot rehearsals. - Instrument fidelity: Cognitive testing and pilot analyses; timing checks to identify satisficing; embedded attention checks with minimal disruption (Krosnick, 1991). - Data handling: Secure storage, encryption, and role-based access; de-identification of transcripts; version-controlled analysis scripts and preregistered quantitative analysis plans to enhance transparency (where feasible). - Ethical compliance: Institutional ethical approval; informed consent; right to withdraw without penalty; data minimization; confidentiality safeguards consistent with BERA guidelines (BERA, 2018). Risks and Mitigation - Low survey response rate: Tailored contact protocol, mixed-mode follow-up if needed, modest incentives, and short instrument (Dillman et al., 2014). Nonresponse weighting if auxiliary data allow (Groves, 2006). - Scheduling and recruitment challenges for focus groups: Flexible scheduling (including virtual sessions), oversampling consenting respondents, and offering alternative small-group or paired interviews where necessary (Morgan, 1997). - Technology failures (online survey platform or virtual focus groups): Redundant systems, pre-session tech checks, and contingency recording solutions. - Social desirability and group conformity: Neutral phrasing, clear confidentiality norms, skilled moderation, and triangulation with survey findings to detect inconsistencies (Krueger & Casey, 2015). - Data loss or confidentiality breach: Encrypted storage, regular backups, and minimal linking files kept separately; strict access controls. - Unexpected contextual disruptions (e.g., policy changes, school closures): Use of remote modalities, extended data collection window, and adaptive scheduling. Milestones and Timeline (12 months) - Months 1–2: Ethics approval; finalize design; instrument drafting; expert review; cognitive interviews. - Month 3: Pilot testing (survey and focus group guide); instrument revision; preregistration of quantitative analysis plan. - Months 4–5: Main survey rollout; reminder protocol; begin preliminary cleaning. - Months 6–7: Focus group recruitment and data collection; ongoing transcription. - Months 7–8: Quantitative data cleaning, imputation, and measurement modeling; descriptive and preliminary inferential analyses. - Months 8–9: Qualitative coding and thematic analysis; intercoder calibration; audit trail consolidation. - Month 10: Integration via joint displays; development of meta-inferences. - Month 11: Member checking of interpretive summaries; sensitivity analyses; finalize results. - Month 12: Manuscript/report preparation and dissemination; archive de-identified data and analysis scripts as appropriate. Limitations and Delimitations - Focus groups limit individual confidentiality; results will be interpreted with this constraint acknowledged. Survey results may be subject to residual nonresponse or common method bias; procedural and statistical controls aim to minimize these threats. References - Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57(1), 289–300. - Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. - British Educational Research Association (BERA). (2018). Ethical guidelines for educational research (4th ed.). - Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. - Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46. - Creswell, J. W., & Plano Clark, V. L. (2017). Designing and conducting mixed methods research (3rd ed.). SAGE. - DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.). SAGE. - Dillman, D. A., Smyth, J. D., & Christian, L. M. (2014). Internet, phone, mail, and mixed-mode surveys: The tailored design method (4th ed.). Wiley. - Fetters, M. D., Curry, L. A., & Creswell, J. W. (2013). Achieving integration in mixed methods designs—Principles and practices. Health Services Research, 48(6 Pt 2), 2134–2156. - Fowler, F. J. (2014). Survey research methods (5th ed.). SAGE. - Groves, R. M. (2006). Nonresponse rates and nonresponse bias in household surveys. Public Opinion Quarterly, 70(5), 646–675. - Krueger, R. A., & Casey, M. A. (2015). Focus groups: A practical guide for applied research (5th ed.). SAGE. - Krosnick, J. A. (1991). Response strategies for coping with the cognitive demands of attitude measures in surveys. Applied Cognitive Psychology, 5(3), 213–236. - Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. SAGE. - Morgan, D. L. (1997). Focus groups as qualitative research (2nd ed.). SAGE. - Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. - Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). SAGE. - Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Wiley. - Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147–177. - Tong, A., Sainsbury, P., & Craig, J. (2007). Consolidated criteria for reporting qualitative research (COREQ): A 32-item checklist for interviews and focus groups. International Journal for Quality in Health Care, 19(6), 349–357. - Willis, G. B. (2005). Cognitive interviewing: A tool for improving questionnaire design. SAGE.
在紧凑的论文周期内,迅速完成方法部分撰写;从抽样设计到统计计划与伦理说明,给出可直接落地的完整稿件。
用于行动研究与课堂实验,快速生成研究方案、课堂观察表与访谈提纲,规范数据记录,减少试错。
服务课题申报与结题汇报,产出方法章节、质量控制流程与风险预案,明确时间里程碑与资源配置。
为量表开发与测评项目提供量表框架、信效度验证路径、评分规则与报告模板,提升工具可用性。
按目标期刊偏好微调术语、结构与引用格式,提前覆盖审稿关注点,降低修改轮次,提升录用概率。
构建混合方法评估设计,确定样本框架与指标体系,生成数据收集手册与访谈指南,沉淀标准流程。
- 面向教育领域的研究者与研究生,快速产出结构严谨、可直接用于投稿或答辩的“研究方法”章节。 - 一键匹配研究设计(实验、准实验、质性、混合方法、行动研究、问卷/访谈/课堂观察等),自动组织为研究对象、抽样策略、工具与测量、实施流程、数据收集与分析、信效度/可信度、伦理合规、局限与偏差控制等关键小节。 - 将零散想法转化为基于证据的表述,保证术语统一、逻辑自洽、论述聚焦,减少冗余与跑题。 - 支持中英双语与学术写作风格切换,贴合目标院系/期刊的格式要求,降低退修概率与返工成本。 - 内置改稿清单与优化建议,帮助对齐研究目标、数据类型与分析方法,提升方法部分的可复现性与说服力。
将模板生成的提示词复制粘贴到您常用的 Chat 应用(如 ChatGPT、Claude 等),即可直接对话使用,无需额外开发。适合个人快速体验和轻量使用场景。
把提示词模板转化为 API,您的程序可任意修改模板参数,通过接口直接调用,轻松实现自动化与批量处理。适合开发者集成与业务系统嵌入。
在 MCP client 中配置对应的 server 地址,让您的 AI 应用自动调用提示词模板。适合高级用户和团队协作,让提示词在不同 AI 工具间无缝衔接。
免费获取高级提示词-优惠即将到期